中考數(shù)學(xué)總復(fù)習(xí)《 圓》考試歷年機(jī)考真題集含完整答案詳解【歷年真題】_第1頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》考試歷年機(jī)考真題集含完整答案詳解【歷年真題】_第2頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》考試歷年機(jī)考真題集含完整答案詳解【歷年真題】_第3頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》考試歷年機(jī)考真題集含完整答案詳解【歷年真題】_第4頁
中考數(shù)學(xué)總復(fù)習(xí)《 圓》考試歷年機(jī)考真題集含完整答案詳解【歷年真題】_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

中考數(shù)學(xué)總復(fù)習(xí)《圓》考試歷年機(jī)考真題集考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,點(diǎn)A,B的坐標(biāo)分別為,點(diǎn)C為坐標(biāo)平面內(nèi)一點(diǎn),,點(diǎn)M為線段的中點(diǎn),連接,則的最大值為()A. B. C. D.2、如圖,圓內(nèi)接正六邊形的邊長為4,以其各邊為直徑作半圓,則圖中陰影部分的面積為(

)A. B. C. D.3、已知圓內(nèi)接正三角形的面積為,則該圓的內(nèi)接正六邊形的邊心距是()A. B. C. D.4、如圖,在?ABCD中,為的直徑,⊙O和相切于點(diǎn)E,和相交于點(diǎn)F,已知,,則的長為(

)A. B. C. D.25、已知點(diǎn)在上.則下列命題為真命題的是(

)A.若半徑平分弦.則四邊形是平行四邊形B.若四邊形是平行四邊形.則C.若.則弦平分半徑D.若弦平分半徑.則半徑平分弦第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,⊙O的直徑AB=4,P為⊙O上的動點(diǎn),連結(jié)AP,Q為AP的中點(diǎn),若點(diǎn)P在圓上運(yùn)動一周,則點(diǎn)Q經(jīng)過的路徑長是______.2、如圖,矩形ABCD的對角線交于點(diǎn)O,以點(diǎn)A為圓心,AB的長為半徑畫弧,剛好過點(diǎn)O,以點(diǎn)D為圓心,DO的長為半徑畫弧,交AD于點(diǎn)E,若AC=2,則圖中陰影部分的面積為_____.(結(jié)果保留π)3、一個扇形的圓心角是120°.它的半徑是3cm.則扇形的弧長為__________cm.4、如圖,在⊙O中,的度數(shù)等于250°,半徑OC垂直于弦AB,垂足為D,那么AC的度數(shù)等于________度.5、如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A,B,C的坐標(biāo)分別是(0,4),(4,0),(8,0),⊙M是△ABC的外接圓,則點(diǎn)M的坐標(biāo)為___________.三、解答題(5小題,每小題10分,共計50分)1、如下圖是一個隧道的橫截面,它的形狀是以點(diǎn)O為圓心的圓的一部分.如果M是中弦的中點(diǎn),經(jīng)過圓心O交圓O于點(diǎn)E,并且.求的半徑.2、如圖,△ABC內(nèi)接于⊙O,∠A=30°,過圓心O作OD⊥BC,垂足為D.若⊙O的半徑為6,求OD的長.3、在中,,,D為的中點(diǎn),E,F(xiàn)分別為,上任意一點(diǎn),連接,將線段繞點(diǎn)E順時針旋轉(zhuǎn)90°得到線段,連接,.(1)如圖1,點(diǎn)E與點(diǎn)C重合,且的延長線過點(diǎn)B,若點(diǎn)P為的中點(diǎn),連接,求的長;(2)如圖2,的延長線交于點(diǎn)M,點(diǎn)N在上,且,求證:;(3)如圖3,F(xiàn)為線段上一動點(diǎn),E為的中點(diǎn),連接,H為直線上一動點(diǎn),連接,將沿翻折至所在平面內(nèi),得到,連接,直接寫出線段的長度的最小值.4、如圖,AB是⊙O的直徑,D,E為⊙O上位于AB異側(cè)的兩點(diǎn),連接BD并延長至點(diǎn)C,使得CD=BD,連接AC交⊙O于點(diǎn)F,連接AE,DE,DF.(1)證明:∠E=∠C;(2)若∠E=55°,求∠BDF的度數(shù).5、【問題提出】如何用圓規(guī)和無刻度的直尺作一條直線或圓弧平分已知扇形的面積?【初步嘗試】如圖1,已知扇形,請你用圓規(guī)和無刻度的直尺過圓心作一條直線,使扇形的面積被這條直線平分;【問題聯(lián)想】如圖2,已知線段,請你用圓規(guī)和無刻度的直尺作一個以為斜邊的等腰直角三角形;【問題再解】如圖3,已知扇形,請你用圓規(guī)和無刻度的直尺作一條以點(diǎn)為圓心的圓弧,使扇形的面積被這條圓弧平分.(友情提醒:以上作圖均不寫作法,但需保留作圖痕跡)-參考答案-一、單選題1、B【解析】【分析】如圖所示,取AB的中點(diǎn)N,連接ON,MN,根據(jù)三角形的三邊關(guān)系可知OM<ON+MN,則當(dāng)ON與MN共線時,OM=ON+MN最大,再根據(jù)等腰直角三角形的性質(zhì)以及三角形的中位線即可解答.【詳解】解:如圖所示,取AB的中點(diǎn)N,連接ON,MN,三角形的三邊關(guān)系可知OM<ON+MN,則當(dāng)ON與MN共線時,OM=ON+MN最大,∵,則△ABO為等腰直角三角形,∴AB=,N為AB的中點(diǎn),∴ON=,又∵M(jìn)為AC的中點(diǎn),∴MN為△ABC的中位線,BC=1,則MN=,∴OM=ON+MN=,∴OM的最大值為故答案選:B.【考點(diǎn)】本題考查了等腰直角三角形的性質(zhì)以及三角形中位線的性質(zhì),解題的關(guān)鍵是確定當(dāng)ON與MN共線時,OM=ON+MN最大.2、A【解析】【分析】正六邊形的面積加上六個小半圓的面積,再減去中間大圓的面積即可得到結(jié)果.【詳解】解:正六邊形的面積為:,六個小半圓的面積為:,中間大圓的面積為:,所以陰影部分的面積為:,故選:A.【考點(diǎn)】本題考查了正多邊形與圓,圓的面積的計算,正六邊形的面積的計算,正確的識別圖形是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)題意可以求得半徑,進(jìn)而解答即可.【詳解】因為圓內(nèi)接正三角形的面積為,所以圓的半徑為,所以該圓的內(nèi)接正六邊形的邊心距×sin60°=×=1,故選B.【考點(diǎn)】本題考查正多邊形和圓,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的圖形的邊心距.4、C【解析】【分析】首先求出圓心角∠EOF的度數(shù),再根據(jù)弧長公式,即可解決問題.【詳解】解:如圖連接OE、OF,∵CD是⊙O的切線,∴OE⊥CD,∴∠OED=90°,∵四邊形ABCD是平行四邊形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°-∠D-∠DFO-∠DEO=30°,∴的長.故選:C.【考點(diǎn)】本題考查切線的性質(zhì)、平行四邊形的性質(zhì)、弧長公式等知識,解題的關(guān)鍵是求出圓心角的度數(shù),記住弧長公式.5、B【解析】【分析】根據(jù)圓的有關(guān)性質(zhì)、垂徑定理及其推論、特殊平行四邊形的判定與性質(zhì)依次對各項判斷即可.【詳解】A.∵半徑平分弦,∴OB⊥AC,AB=BC,不能判斷四邊形OABC是平行四邊形,假命題;B.∵四邊形是平行四邊形,且OA=OC,∴四邊形是菱形,∴OA=AB=OB,OA∥BC,∴△OAB是等邊三角形,∴∠OAB=60o,∴∠ABC=120o,真命題;C.∵,∴∠AOC=120o,不能判斷出弦平分半徑,假命題;D.只有當(dāng)弦垂直平分半徑時,半徑平分弦,所以是假命題,故選:B.【考點(diǎn)】本題主要考查命題與證明,涉及垂徑定理及其推論、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識,解答的關(guān)鍵是會利用所學(xué)的知識進(jìn)行推理證明命題的真假.二、填空題1、【解析】【分析】連接OQ,以O(shè)A為直徑作⊙C,確定出點(diǎn)Q的運(yùn)動路徑即可求得路徑長.【詳解】解:連接OQ.在⊙O中,∵AQ=PQ,OQ經(jīng)過圓心O,∴OQ⊥AP.∴∠AQO=90°.∴點(diǎn)Q在以O(shè)A為直徑的⊙C上.∴當(dāng)點(diǎn)P在⊙O上運(yùn)動一周時,點(diǎn)Q在⊙C上運(yùn)動一周.∵AB=4,∴OA=2.∴⊙C的周長為.∴點(diǎn)Q經(jīng)過的路徑長為.故答案為:【考點(diǎn)】本題考查了垂徑定理的推論、圓周角定理的推論、圓周長的計算等知識點(diǎn),熟知相關(guān)定理及其推論是解題的基礎(chǔ),確定點(diǎn)Q的運(yùn)動路徑是解題的關(guān)鍵.2、【解析】【分析】由圖可知,陰影部分的面積是扇形ABO和扇形DEO的面積之和,然后根據(jù)題目中的數(shù)據(jù),可以求得AB、OA、DE的長,∠BAO和∠EDO的度數(shù),從而可以解答本題.【詳解】解:∵四邊形ABCD是矩形,∴OA=OC=OB=OD,∵AB=AO,∴△ABO是等邊三角形,∴∠BAO=60°,∴∠EDO=30°,∵AC=2,∴OA=OD=1,∴圖中陰影部分的面積為:,故答案為:.【考點(diǎn)】本題主要考查扇形面積、矩形的性質(zhì)及等邊三角形的性質(zhì)與判定,熟練掌握扇形面積、矩形的性質(zhì)及等邊三角形的性質(zhì)與判定是解題的關(guān)鍵.3、2π【解析】【詳解】分析:根據(jù)弧長公式可得結(jié)論.詳解:根據(jù)題意,扇形的弧長為=2π,故答案為2π點(diǎn)睛:本題主要考查弧長的計算,熟練掌握弧長公式是解題的關(guān)鍵.4、55【解析】【分析】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,再根據(jù)垂徑定理即可得解.【詳解】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,∵OC⊥AB,∴,∴∠AOC=∠AOB=55°.故答案為55.【考點(diǎn)】本題主要考查圓心角定理與垂徑定理,解此題的關(guān)鍵在于熟練掌握其知識點(diǎn).5、(6,6)【解析】【分析】如圖:由題意可得M在AB、BC的垂直平分線上,則BN=CN;證得ON=OB+BN=6,即△OMN是等腰直角三角形,得出MN=ON=6,即可得出答案.【詳解】解:如圖∵圓M是△ABC的外接圓∴點(diǎn)M在AB、BC的垂直平分線上,∴BN=CN,∵點(diǎn)A,B,C的坐標(biāo)分別是(0,4),(4,0),(8,0)∴OA=OB=4,OC=8,∴BC=4,∴BN=2,∴ON=OB+BN=6,∵∠AOB=90°,∴△AOB是等腰直角三角形,∵OM⊥AB,∴∠MON=45°,∴△OMN是等腰直角三角形,∴MN=ON=6,點(diǎn)M的坐標(biāo)為(6,6).故答案為(6,6).【考點(diǎn)】本題考查了三角形的外接圓與外心、坐標(biāo)與圖形性質(zhì)、等腰直角三角形的判定與性質(zhì)等知識,其中判定△OMN為等腰直角三角形是解答本題的關(guān)鍵.三、解答題1、【解析】【分析】連接CO,利用垂徑定理求解再令⊙O的半徑為rm,利用勾股定理建立方程求解半徑即可得到答案.【詳解】解:連接CO.∵M(jìn)是弦CD的中點(diǎn),且EM經(jīng)過圓心O,∴EM⊥CD,且CM=CD=×4=2.在Rt△OCM中,令⊙O的半徑為rm,∵OC2=OM2+CM2,∴,解得:r=.【考點(diǎn)】本題考查的是垂徑定理的應(yīng)用,勾股定理的應(yīng)用,掌握利用垂徑定理構(gòu)建直角三角形是解題的關(guān)鍵.2、【解析】【分析】連接OB、OC,由圓周角定理及圓的性質(zhì)得△OBC是等邊三角形,由OD⊥BC可得CD=BD,由勾股定理可求得OD的長.【詳解】連接OB、OC,如圖則OB=OC=6∵圓周角∠A與圓心角∠BOC對著同一段弧∴∠BOC=2∠A=60゜∴△OBC是等邊三角形∴BC=OB=6∵OD⊥BC∴在Rt△ODC中,由勾股定理得:【考點(diǎn)】本題考查了圓周角定理、等邊三角形的判定與性質(zhì)、勾股定理等知識,連接兩個半徑運(yùn)用圓周角定理是本題的關(guān)鍵.3、(1)2(2)見解析(3)【解析】【分析】(1)根據(jù)已知條件可得為的中點(diǎn),證明,進(jìn)而根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解;(2)過點(diǎn)作交的延長線于點(diǎn),證明,,可得,進(jìn)而根據(jù),即可得出結(jié)論,(3)根據(jù)(2)可知,當(dāng)點(diǎn)在線段上運(yùn)動時,點(diǎn)在平行于的線段上運(yùn)動,根據(jù)題意作出圖形,根據(jù)點(diǎn)到圓上的距離求最值即可求解.(1)如圖,連接將線段繞點(diǎn)E順時針旋轉(zhuǎn)90°得到線段,是等腰直角三角形,P為FG的中點(diǎn),,,,,D為的中點(diǎn),,,,,在中,;(2)如圖,過點(diǎn)作交的延長線于點(diǎn),,,,,是等腰直角三角形,,,在與中,

,,,,又,,

,,,,,

又,,,,,,,;(3)由(2)可知,則當(dāng)點(diǎn)在線段上運(yùn)動時,點(diǎn)在平行于的線段上運(yùn)動,將沿翻折至所在平面內(nèi),得到,E為的中點(diǎn),,,則點(diǎn)在以為圓心為半徑的圓上運(yùn)動,當(dāng)三點(diǎn)共線時,最小,如圖,當(dāng)運(yùn)動到與點(diǎn)重合時,取得最小值,.如圖,當(dāng)點(diǎn)運(yùn)動到與點(diǎn)重合時,取得最小值,此時,則.綜上所述,的最小值為.【考點(diǎn)】本題考查了等腰三角形的性質(zhì)與判定,直角三角形斜邊上的中線,勾股定理,全等三角形的性質(zhì)與判定,軸對稱線的性質(zhì),點(diǎn)到圓上一點(diǎn)距離最值問題,正確的添加輔助線是解題的關(guān)鍵.4、(1)詳見解析;(2)110°.【解析】【分析】(1)連接AD,利用直徑所對的圓周角為直角,可得AD⊥BC,再根據(jù)CD=BD,故AD垂直平分BC,根據(jù)垂直平分線上的點(diǎn)到線段兩個端點(diǎn)的距離相等,可得:AB=AC,再根據(jù)等邊對等角和同弧所對的圓周角相等即可得到∠E=∠C;(2)根據(jù)內(nèi)接四邊形的性質(zhì):四邊形的外角等于它的內(nèi)對角,可得∠CFD=∠E=55°,再利用外角的性質(zhì)即可求出∠BDF.【詳解】(1)證明:連接AD,如圖所示:∵AB是⊙O的直徑,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,∵∠B=∠E,∴∠E=∠C;(2)解:∵四邊形AEDF是⊙O的內(nèi)接四邊形,∴∠AFD=180°﹣∠E,∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,由(1)得:∠E=∠C=55°,∴∠BDF=∠C+∠CFD=55°+55°=110°.【考點(diǎn)】此題考查的是(1)直徑所對的圓周角是直角、垂直平分線的性質(zhì)和同弧所對的圓周角相等;(2)內(nèi)接四邊形的性質(zhì).5、見解析【解析】【分析】【初步嘗試】如圖1,作∠AOB的角平分線所在直線即為所求;【問題聯(lián)想】如圖2,先作MN的線段垂直平分線交MN于點(diǎn)O,再以O(shè)為圓心MO為半徑作圓,與垂直平分線的交點(diǎn)即為等腰直角三角形的頂點(diǎn);【問題再解】如圖3先作OB的線段垂直平分線交OB于點(diǎn)N,再以N為圓心NO為半徑作圓,與垂直平分線的交點(diǎn)為M,然后

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論