版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025-2026學年山東省濟寧鄒城一中高三數(shù)學第一學期期末達標檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等比數(shù)列的各項均為正數(shù),且,則()A.12 B.10 C.8 D.2.函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位3.已知,則的大小關系為()A. B. C. D.4.已知角的頂點為坐標原點,始邊與軸的非負半軸重合,終邊上有一點,則().A. B. C. D.5.設、是兩條不同的直線,、是兩個不同的平面,則的一個充分條件是()A.且 B.且 C.且 D.且6.已知函數(shù)是定義在上的偶函數(shù),當時,,則,,的大小關系為()A. B. C. D.7.點是單位圓上不同的三點,線段與線段交于圓內一點M,若,則的最小值為()A. B. C. D.8.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.9.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計圖如下面的折線圖.已知目前的月就醫(yī)費比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元10.已知是兩條不重合的直線,是兩個不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則11.已知,函數(shù),若函數(shù)恰有三個零點,則()A. B.C. D.12.已知集合,則的值域為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在二項式的展開式中,的系數(shù)為________.14.《九章算術》是中國古代的數(shù)學名著,其中《方田》一章給出了弧田面積的計算公式.如圖所示,弧田是由圓弧AB和其所對弦AB圍成的圖形,若弧田的弧AB長為4π,弧所在的圓的半徑為6,則弧田的弦AB長是__________,弧田的面積是__________.15.已知橢圓與雙曲線有相同的焦點、,其中為左焦點.點為兩曲線在第一象限的交點,、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為________.16.過點,且圓心在直線上的圓的半徑為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知凸邊形的面積為1,邊長,,其內部一點到邊的距離分別為.求證:.18.(12分)已知數(shù)列滿足對任意都有,其前項和為,且是與的等比中項,.(1)求數(shù)列的通項公式;(2)已知數(shù)列滿足,,設數(shù)列的前項和為,求大于的最小的正整數(shù)的值.19.(12分)已知橢圓的焦點為,,離心率為,點P為橢圓C上一動點,且的面積最大值為,O為坐標原點.(1)求橢圓C的方程;(2)設點,為橢圓C上的兩個動點,當為多少時,點O到直線MN的距離為定值.20.(12分)已知拋物線:,點為拋物線的焦點,焦點到直線的距離為,焦點到拋物線的準線的距離為,且.(1)求拋物線的標準方程;(2)若軸上存在點,過點的直線與拋物線相交于、兩點,且為定值,求點的坐標.21.(12分)已知函數(shù)(1)求單調區(qū)間和極值;(2)若存在實數(shù),使得,求證:22.(10分)已知函數(shù).(1)若,求函數(shù)的單調區(qū)間;(2)若恒成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由等比數(shù)列的性質求得,再由對數(shù)運算法則可得結論.【詳解】∵數(shù)列是等比數(shù)列,∴,,∴.故選:B.本題考查等比數(shù)列的性質,考查對數(shù)的運算法則,掌握等比數(shù)列的性質是解題關鍵.2.C【解析】
根據正弦型函數(shù)的圖象得到,結合圖像變換知識得到答案.【詳解】由圖象知:,∴.又時函數(shù)值最大,所以.又,∴,從而,,只需將的圖象向左平移個單位即可得到的圖象,故選C.已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點法”中相對應的特殊點求,一般用最高點或最低點求.3.A【解析】
根據指數(shù)函數(shù)的單調性,可得,再利用對數(shù)函數(shù)的單調性,將與對比,即可求出結論.【詳解】由題知,,則.故選:A.本題考查利用函數(shù)性質比較大小,注意與特殊數(shù)的對比,屬于基礎題..4.B【解析】
根據角終邊上的點坐標,求得,代入二倍角公式即可求得的值.【詳解】因為終邊上有一點,所以,故選:B此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.5.B【解析】由且可得,故選B.6.C【解析】
根據函數(shù)的奇偶性得,再比較的大小,根據函數(shù)的單調性可得選項.【詳解】依題意得,,當時,,因為,所以在上單調遞增,又在上單調遞增,所以在上單調遞增,,即,故選:C.本題考查函數(shù)的奇偶性的應用、冪、指、對的大小比較,以及根據函數(shù)的單調性比較大小,屬于中檔題.7.D【解析】
由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當且僅當時等號成立),,的最小值為,故選:D.本題主要考查平面向量數(shù)量積的應用,考查基本不等式的應用,屬于中檔題.8.B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.9.D【解析】
設目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結果即可.【詳解】設目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.本題考查由條形圖和折線圖等基礎知識解決實際問題,屬于基礎題.10.B【解析】
根據空間中線線、線面位置關系,逐項判斷即可得出結果.【詳解】A選項,若,,,,則或與相交;故A錯;B選項,若,,則,又,是兩個不重合的平面,則,故B正確;C選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故C錯;D選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故D錯;故選B本題主要考查與線面、線線相關的命題,熟記線線、線面位置關系,即可求解,屬于??碱}型.11.C【解析】
當時,最多一個零點;當時,,利用導數(shù)研究函數(shù)的單調性,根據單調性畫函數(shù)草圖,根據草圖可得.【詳解】當時,,得;最多一個零點;當時,,,當,即時,,在,上遞增,最多一個零點.不合題意;當,即時,令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個零點;根據題意函數(shù)恰有3個零點函數(shù)在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.12.A【解析】
先求出集合,化簡=,令,得由二次函數(shù)的性質即可得值域.【詳解】由,得,,令,,,所以得,在上遞增,在上遞減,,所以,即的值域為故選A本題考查了二次不等式的解法、二次函數(shù)最值的求法,換元法要注意新變量的范圍,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13.60【解析】
直接利用二項式定理計算得到答案.【詳解】二項式的展開式通項為:,取,則的系數(shù)為.故答案為:.本題考查了二項式定理,意在考查學生的計算能力和應用能力.14.612π﹣9【解析】
過作,交于,先求得圓心角的弧度數(shù),然后解解三角形求得的長.利用扇形面積減去三角形的面積,求得弧田的面積.【詳解】∵如圖,弧田的弧AB長為4π,弧所在的圓的半徑為6,過作,交于,根據圓的幾何性質可知,垂直平分.∴α=∠AOB==,可得∠AOD=,OA=6,∴AB=2AD=2OAsin=2×=6,∴弧田的面積S=S扇形OAB﹣S△OAB=4π×6﹣=12π﹣9.故答案為:6,12π﹣9.本小題主要考查弓形弦長和弓形面積的計算,考查中國古代數(shù)學文化,屬于中檔題.15.【解析】
設,由橢圓和雙曲線的定義得到,根據是以為底邊的等腰三角形,得到,從而有,根據,得到,再利用導數(shù)法求的范圍.【詳解】設,由橢圓的定義得,由雙曲線的定義得,所以,因為是以為底邊的等腰三角形,所以,即,因為,所以,因為,所以,所以,即,而,因為,所以在上遞增,所以.故答案為:本題主要考查橢圓,雙曲線的定義和幾何性質,還考查了運算求解的能力,屬于中檔題.16.【解析】
根據弦的垂直平分線經過圓心,結合圓心所在直線方程,即可求得圓心坐標.由兩點間距離公式,即可得半徑.【詳解】因為圓經過點則直線的斜率為所以與直線垂直的方程斜率為點的中點坐標為所以由點斜式可得直線垂直平分線的方程為,化簡可得而弦的垂直平分線經過圓心,且圓心在直線上,設圓心所以圓心滿足解得所以圓心坐標為則圓的半徑為故答案為:本題考查了直線垂直時的斜率關系,直線與直線交點的求法,直線與圓的位置關系,圓的半徑的求法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.證明見解析【解析】
由已知,易得,所以利用柯西不等式和基本不等式即可證明.【詳解】因為凸邊形的面積為1,所以,所以(由柯西不等式得)(由均值不等式得)本題考查利用柯西不等式、基本不等式證明不等式的問題,考查學生對不等式靈活運用的能力,是一道容易題.18.(1)(2)4【解析】
(1)利用判斷是等差數(shù)列,利用求出,利用等比中項建立方程,求出公差可得.(2)利用的通項公式,求出,用錯位相減法求出,最后建立不等式求出最小的正整數(shù).【詳解】解:任意都有,數(shù)列是等差數(shù)列,,又是與的等比中項,,設數(shù)列的公差為,且,則,解得,,;由題意可知,①,②,①﹣②得:,,,由得,,,,滿足條件的最小的正整數(shù)的值為.本題考查等差數(shù)列的通項公式和前項和公式及錯位相減法求和.(1)解決等差數(shù)列通項的思路(1)在等差數(shù)列中,是最基本的兩個量,一般可設出和,利用等差數(shù)列的通項公式和前項和公式列方程(組)求解即可.(2)錯位相減法求和的方法:如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前項和時,可采用錯位相減法,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解;在寫“”與“”的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式19.(1);(2)當=0時,點O到直線MN的距離為定值.【解析】
(1)的面積最大時,是短軸端點,由此可得,再由離心率及可得,從而得橢圓方程;(2)在直線斜率存在時,設其方程為,現(xiàn)橢圓方程聯(lián)立消元()后應用韋達定理得,注意,一是計算,二是計算原點到直線的距離,兩者比較可得結論.【詳解】(1)因為在橢圓上,當是短軸端點時,到軸距離最大,此時面積最大,所以,由,解得,所以橢圓方程為.(2)在時,設直線方程為,原點到此直線的距離為,即,由,得,,,所以,,,所以當時,,,為常數(shù).若,則,,,,,綜上所述,當=0時,點O到直線MN的距離為定值.本題考查求橢圓方程與橢圓的幾何性質,考查直線與橢圓的位置關系,考查運算求解能力.解題方法是“設而不求”法.在直線與圓錐曲線相交時常用此法通過韋達定理聯(lián)系已知式與待求式.20.(1)(2)【解析】
(1)先分別表示出,然后根據求解出的值,則的標準方程可求;(2)設出直線的方程并聯(lián)立拋物線方程得到韋達定理形式,然后根據距離公式表示出并代入韋達定理形式,由此判斷出為定值時的坐標.【詳解】(1)由題意可得,焦點,,則,,∴解得.拋物線的標準方程為(2)設,設點,,顯然直線的斜率不為0.設直線的方程為聯(lián)立方程,整理可得,,∴,∴要使為定值,必有,解得,∴為定值時,點的坐標為本題考查拋物線方程的求解以及拋物線中的定值問題,難度一般.(1)處理直線與拋物線相交對應的定值問題,聯(lián)立直線方程借助韋達定理形式是常用方法;(2)直線與圓錐曲線的問題中,直線方程的設法有時能很大程度上起到簡化運算的作用。21.(1)時,函數(shù)單調遞增,,函數(shù)單調遞減,;(2)見解析【解析】
(1)求出函數(shù)的定義域與導函數(shù),利用導數(shù)求函數(shù)的單調區(qū)間,即可得到函數(shù)的極值;(2)易得且,要證明,即證,即證,即對恒成立,構造函數(shù),,利用導數(shù)研究函數(shù)的單調性與最值,即可得證;【詳解】解:(1)因為定義域為,所以,時,,即在和上單調遞增,當時,,即函數(shù)在單調遞減,所以在處取得極小值,在處取得極大值;,;(2)易得,要證明,即證,即證即證對恒成立,令,,則令,解得,即在上單調遞增;令,解得,即在上單調遞減;則在取得極小值,也就是最小值,從而結論得證.本題考查利用導數(shù)研究函數(shù)的單調性與極值,利用導數(shù)證明不等式,考查運算求解能力,考查函數(shù)與方程思想,屬于中檔題.22.(1)增區(qū)間為,減區(qū)間為;(2).【解析】
(1)將代入函數(shù)的解析式,利用導數(shù)可得出函數(shù)的單調區(qū)間;(2)求函數(shù)的導數(shù),分類討論的范圍,利用導數(shù)分析函數(shù)的單調性,求出函數(shù)的最值可判斷是否恒成立,可得實數(shù)的取值范圍.【詳解】(1)當時,,則,當時,,則,此時,函數(shù)為減函數(shù);當時,,則,此時,函數(shù)為增函數(shù).所以,函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年佛山市均安鎮(zhèn)專職消防隊招聘消防員5人備考題庫及完整答案詳解一套
- 2025年河南省地質局所屬事業(yè)單位招聘40人備考題庫及答案詳解1套
- 2025年贛江新區(qū)人民醫(yī)院心血管內科醫(yī)師崗招聘備考題庫(第二批)完整參考答案詳解
- 2025年日照市莒縣沭東中醫(yī)醫(yī)院有限公司招聘備考題庫及一套完整答案詳解
- 浙江省海寧市教育系統(tǒng)事業(yè)單位招聘教師備考題庫(2025年12月赴天津職業(yè)技術師范大學)及參考答案詳解
- 2025年陜西中醫(yī)藥大學第二附屬醫(yī)院博士研究生公開招聘25人備考題庫及完整答案詳解一套
- 2025年懷化市教育局直屬學校公開招聘教職工備考題庫及完整答案詳解1套
- 2025年揭陽市消防救援支隊招聘85名政府專職消防員備考題庫完整參考答案詳解
- 2025年成都市新都區(qū)旃檀小學校赴高校公開招聘人員控制數(shù)教師30人備考題庫參考答案詳解
- 岳陽市人民醫(yī)院2026年專業(yè)技術人員招聘備考題庫及答案詳解參考
- 【超星爾雅學習通】日本近現(xiàn)代文學選讀網課章節(jié)答案
- 電子技術課程設計(數(shù)字電子秤)
- 正確認識乙酰膽堿
- GB/T 40047-2021個體防護裝備運動眼面部防護滑雪鏡
- 2023年電大國際法答案
- 前列腺癌根治術護理查房
- 數(shù)理統(tǒng)計(第三版)課后習題答案
- 2-管道儀表流程圖PID
- 思想道德與法治課件:第五章 第二節(jié) 吸收借鑒優(yōu)秀道德成果
- 新鄉(xiāng)瑞豐 潤滑油添加劑系列產品技術改造項目 環(huán)評報告書
- 高速服務區(qū)給排水工程施工組織方案
評論
0/150
提交評論