版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025-2026學年湖北省恩施州巴東三中數(shù)學高三第一學期期末聯(lián)考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在三角形中,,,求()A. B. C. D.2.已知滿足,則()A. B. C. D.3.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院校科研方陣.他們是由軍事科學院、國防大學、國防科技大學聯(lián)合組建.若已知甲、乙、丙三人來自上述三所學校,學歷分別有學士、碩士、博士學位.現(xiàn)知道:①甲不是軍事科學院的;②來自軍事科學院的不是博士;③乙不是軍事科學院的;④乙不是博士學位;⑤國防科技大學的是研究生.則丙是來自哪個院校的,學位是什么()A.國防大學,研究生 B.國防大學,博士C.軍事科學院,學士 D.國防科技大學,研究生4.已知數(shù)列滿足,且成等比數(shù)列.若的前n項和為,則的最小值為()A. B. C. D.5.《周易》歷來被人們視作儒家群經(jīng)之首,它表現(xiàn)了古代中華民族對萬事萬物的深刻而又樸素的認識,是中華人文文化的基礎,它反映出中國古代的二進制計數(shù)的思想方法.我們用近代術語解釋為:把陽爻“-”當作數(shù)字“1”,把陰爻“--”當作數(shù)字“0”,則八卦所代表的數(shù)表示如下:卦名符號表示的二進制數(shù)表示的十進制數(shù)坤0000震0011坎0102兌0113依此類推,則六十四卦中的“屯”卦,符號“”表示的十進制數(shù)是()A.18 B.17 C.16 D.156.在四面體中,為正三角形,邊長為6,,,,則四面體的體積為()A. B. C.24 D.7.設等差數(shù)列的前項和為,若,,則()A.21 B.22 C.11 D.128.設是虛數(shù)單位,若復數(shù),則()A. B. C. D.9.在展開式中的常數(shù)項為A.1 B.2 C.3 D.710.是定義在上的增函數(shù),且滿足:的導函數(shù)存在,且,則下列不等式成立的是()A. B.C. D.11.已知復數(shù)滿足,其中為虛數(shù)單位,則().A. B. C. D.12.中國古代數(shù)學著作《孫子算經(jīng)》中有這樣一道算術題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記為等比數(shù)列的前n項和,已知,,則_______.14.已知函數(shù),則關于的不等式的解集為_______.15.已知數(shù)列的前項和為,,,,則滿足的正整數(shù)的所有取值為__________.16.已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,滿足,其中,,則的值為_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)判斷函數(shù)在區(qū)間上的零點的個數(shù);(2)記函數(shù)在區(qū)間上的兩個極值點分別為、,求證:.18.(12分)[選修4-4:極坐標與參數(shù)方程]在直角坐標系中,曲線的參數(shù)方程為(是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若射線與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值19.(12分)已知數(shù)列滿足:對一切成立.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.20.(12分)已知各項均不相等的等差數(shù)列的前項和為,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.21.(12分)在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.(1)求的直角坐標方程與點的直角坐標;(2)求證:.22.(10分)某市環(huán)保部門對該市市民進行了一次垃圾分類知識的網(wǎng)絡問卷調查,每一位市民僅有一次參加機會,通過隨機抽樣,得到參加問卷調查的人的得分(滿分:分)數(shù)據(jù),統(tǒng)計結果如下表所示.組別頻數(shù)(1)已知此次問卷調查的得分服從正態(tài)分布,近似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表),請利用正態(tài)分布的知識求;(2)在(1)的條件下,環(huán)保部門為此次參加問卷調查的市民制定如下獎勵方案.(?。┑梅植坏陀诘目梢垣@贈次隨機話費,得分低于的可以獲贈次隨機話費;(ⅱ)每次贈送的隨機話費和相應的概率如下表.贈送的隨機話費/元概率現(xiàn)市民甲要參加此次問卷調查,記為該市民參加問卷調查獲贈的話費,求的分布列及數(shù)學期望.附:,若,則,,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
利用正弦定理邊角互化思想結合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應用,考查計算能力,屬于中等題.2.A【解析】
利用兩角和與差的余弦公式展開計算可得結果.【詳解】,.故選:A.本題考查三角求值,涉及兩角和與差的余弦公式的應用,考查計算能力,屬于基礎題.3.C【解析】
根據(jù)①③可判斷丙的院校;由②和⑤可判斷丙的學位.【詳解】由題意①甲不是軍事科學院的,③乙不是軍事科學院的;則丙來自軍事科學院;由②來自軍事科學院的不是博士,則丙不是博士;由⑤國防科技大學的是研究生,可知丙不是研究生,故丙為學士.綜上可知,丙來自軍事科學院,學位是學士.故選:C.本題考查了合情推理的簡單應用,由條件的相互牽制判斷符合要求的情況,屬于基礎題.4.D【解析】
利用等比中項性質可得等差數(shù)列的首項,進而求得,再利用二次函數(shù)的性質,可得當或時,取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調性,可知當或時,取到最小值,最小值為.故選:D.本題考查等差數(shù)列通項公式、等比中項性質、等差數(shù)列前項和的最值,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當或時同時取到最值.5.B【解析】
由題意可知“屯”卦符號“”表示二進制數(shù)字010001,將其轉化為十進制數(shù)即可.【詳解】由題意類推,可知六十四卦中的“屯”卦符號“”表示二進制數(shù)字010001,轉化為十進制數(shù)的計算為1×20+1×24=1.故選:B.本題主要考查數(shù)制是轉化,新定義知識的應用等,意在考查學生的轉化能力和計算求解能力.6.A【解析】
推導出,分別取的中點,連結,則,推導出,從而,進而四面體的體積為,由此能求出結果.【詳解】解:在四面體中,為等邊三角形,邊長為6,,,,,,分別取的中點,連結,則,且,,,,平面,平面,,四面體的體積為:.故答案為:.本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關系等基礎知識,考查運算求解能力.7.A【解析】
由題意知成等差數(shù)列,結合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.本題考查了等差數(shù)列的性質,考查了等差中項.對于等差數(shù)列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結合等差數(shù)列性質,可使得計算量大大減少.8.A【解析】
結合復數(shù)的除法運算和模長公式求解即可【詳解】∵復數(shù),∴,,則,故選:A.本題考查復數(shù)的除法、模長、平方運算,屬于基礎題9.D【解析】
求出展開項中的常數(shù)項及含的項,問題得解?!驹斀狻空归_項中的常數(shù)項及含的項分別為:,,所以展開式中的常數(shù)項為:.故選:D本題主要考查了二項式定理中展開式的通項公式及轉化思想,考查計算能力,屬于基礎題。10.D【解析】
根據(jù)是定義在上的增函數(shù)及有意義可得,構建新函數(shù),利用導數(shù)可得為上的增函數(shù),從而可得正確的選項.【詳解】因為是定義在上的增函數(shù),故.又有意義,故,故,所以.令,則,故在上為增函數(shù),所以即,整理得到.故選:D.本題考查導數(shù)在函數(shù)單調性中的應用,一般地,數(shù)的大小比較,可根據(jù)數(shù)的特點和題設中給出的原函數(shù)與導數(shù)的關系構建新函數(shù),本題屬于中檔題.11.A【解析】
先化簡求出,即可求得答案.【詳解】因為,所以所以故選:A此題考查復數(shù)的基本運算,注意計算的準確度,屬于簡單題目.12.C【解析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設等比數(shù)列的公比為,將已知條件等式轉化為關系式,求解即可.【詳解】設等比數(shù)列的公比為,,.故答案為:.本題考查等比數(shù)列通項的基本量運算,屬于基礎題.14.【解析】
判斷的奇偶性和單調性,原不等式轉化為,運用單調性,可得到所求解集.【詳解】令,易知函數(shù)為奇函數(shù),在R上單調遞增,,即,∴∴,即x>故答案為:本題考查函數(shù)的奇偶性和單調性的運用:解不等式,考查轉化思想和運算能力,屬于中檔題.15.20,21【解析】
由題意知數(shù)列奇數(shù)項和偶數(shù)項分別為等差數(shù)列和等比數(shù)列,則根據(jù)為奇數(shù)和為偶數(shù)分別算出求和公式,代入數(shù)值檢驗即可.【詳解】解:由題意知數(shù)列的奇數(shù)項構成公差為的等差數(shù)列,偶數(shù)項構成公比為的等比數(shù)列,則;.當時,,.當時,,.由此可知,滿足的正整數(shù)的所有取值為20,21.故答案為:20,21本題考查等差數(shù)列與等比數(shù)列通項與求和公式,是綜合題,分清奇數(shù)項和偶數(shù)項是解題的關鍵.16.【解析】
根據(jù)題意,判斷出,根據(jù)等比數(shù)列的性質可得,再令數(shù)列中的,,,根據(jù)等差數(shù)列的性質,列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數(shù)列中的,,,根據(jù)等差數(shù)列的性質,可得,所以.②根據(jù)①②得出,.所以.故答案為.本題主要考查等差數(shù)列、等比數(shù)列的性質,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析.【解析】
(1)利用導數(shù)分析函數(shù)在區(qū)間上的單調性與極值,結合零點存在定理可得出結論;(2)設函數(shù)的極大值點和極小值點分別為、,由(1)知,,且滿足,,于是得出,由得,利用正切函數(shù)的單調性推導出,再利用正弦函數(shù)的單調性可得出結論.【詳解】(1),,,當時,,,,則函數(shù)在上單調遞增;當時,,,,則函數(shù)在上單調遞減;當時,,,,則函數(shù)在上單調遞增.,,,,.所以,函數(shù)在與不存在零點,在區(qū)間和上各存在一個零點.綜上所述,函數(shù)在區(qū)間上的零點的個數(shù)為;(2),.由(1)得,在區(qū)間與上存在零點,所以,函數(shù)在區(qū)間與上各存在一個極值點、,且,,且滿足即,,,又,即,,,,,由在上單調遞增,得,再由在上單調遞減,得,即.本題考查利用導數(shù)研究函數(shù)的零點個數(shù)問題,同時也考查了利用導數(shù)證明不等式,考查分析問題和解決問題的能力,屬于難題.18.(1)的極坐標方程為.曲線的直角坐標方程為.(2)【解析】
(1)先得到的一般方程,再由極坐標化直角坐標的公式得到一般方程,將代入得,得到曲線的直角坐標方程;(2)設點、的極坐標分別為,,將分別代入曲線、極坐標方程得:,,,之后進行化一,可得到最值,此時,可求解.【詳解】(1)由得,將代入得:,故曲線的極坐標方程為.由得,將代入得,故曲線的直角坐標方程為.(2)設點、的極坐標分別為,,將分別代入曲線、極坐標方程得:,,則,其中為銳角,且滿足,,當時,取最大值,此時,這個題目考查了參數(shù)方程化為普通方程的方法,極坐標化為直角坐標的方法,以及極坐標中極徑的幾何意義,極徑代表的是曲線上的點到極點的距離,在參數(shù)方程和極坐標方程中,能表示距離的量一個是極徑,一個是t的幾何意義,其中極徑多數(shù)用于過極點的曲線,而t的應用更廣泛一些.19.(1);(2)【解析】
(1)先通過求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過裂項求和法可得答案.【詳解】(1)①,當時,,,當時,②,①②得:,,適合,故;(2),.本題考查法求數(shù)列的通項公式,考查裂項求和,是基礎題.20.(1);(2).【解析】試題分析:(1)設公差為,列出關于的方程組,求解的值,即可得到數(shù)列的通項公式;(2)由(1)可得,即可利用裂項相消求解數(shù)列的和.試題解析:(1)設公差為.由已知得,解得或(舍去),所以,故.(2),考點:等差數(shù)列的通項公式;數(shù)列的求和.21.(1),;(2)見解析.【解析】
(1)將曲線的極坐標方程變形為,再由可將曲線的極坐標方程化為直角坐標方程,將直線的方程與曲線的方程聯(lián)立,求出點、的坐標,即可得出線段的中點的坐標;(2)求得,寫
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高級審計師面試題及審計流程解析
- 人力資源薪酬績效主管筆試題及答案
- 中國聯(lián)通財務分析師財務分析筆試題及答案
- 2025年國際貨運代理平臺項目可行性研究報告
- 2025年智能互聯(lián)網(wǎng)家居集成項目可行性研究報告
- 2025年繪畫藝術數(shù)字化平臺項目可行性研究報告
- 2025年人工智能技術投資項目可行性研究報告
- 2025年高端制造業(yè)創(chuàng)意設計中心可行性研究報告
- 2025年光伏發(fā)電項目建設與經(jīng)濟效益可行性研究報告
- 2025年社區(qū)兒童教育項目可行性研究報告
- 2026屆八省聯(lián)考(T8聯(lián)考)2026屆高三年級12月檢測訓練地理試卷(含答案詳解)
- 2025民生銀行總行資產(chǎn)經(jīng)營管理部社會招聘筆試題庫帶答案解析
- 公益性公墓建設項目竣工驗收報告
- 2026年上海工程技術大學單招職業(yè)傾向性測試題庫參考答案詳解
- 2025黑龍江大興安嶺地區(qū)韓家園林業(yè)局工勤崗位人員招聘40人備考考點試題及答案解析
- 2025年陜煤澄合礦業(yè)有限公司招聘(570人)筆試備考題庫附答案解析
- 2025年保密觀知識競賽題庫(含參考答案)
- 2025山西朔州市兩級法院司法輔助人員招聘16人筆試考試備考試題及答案解析
- 危險化學品應急救援員崗位招聘考試試卷及答案
- 物業(yè)餐飲安全協(xié)議書
- 生物統(tǒng)計學期末復習題庫及答案
評論
0/150
提交評論