2025-2026學(xué)年安徽省亳州市渦陽(yáng)縣第一中學(xué)數(shù)學(xué)高三上期末復(fù)習(xí)檢測(cè)試題_第1頁(yè)
2025-2026學(xué)年安徽省亳州市渦陽(yáng)縣第一中學(xué)數(shù)學(xué)高三上期末復(fù)習(xí)檢測(cè)試題_第2頁(yè)
2025-2026學(xué)年安徽省亳州市渦陽(yáng)縣第一中學(xué)數(shù)學(xué)高三上期末復(fù)習(xí)檢測(cè)試題_第3頁(yè)
2025-2026學(xué)年安徽省亳州市渦陽(yáng)縣第一中學(xué)數(shù)學(xué)高三上期末復(fù)習(xí)檢測(cè)試題_第4頁(yè)
2025-2026學(xué)年安徽省亳州市渦陽(yáng)縣第一中學(xué)數(shù)學(xué)高三上期末復(fù)習(xí)檢測(cè)試題_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025-2026學(xué)年安徽省亳州市渦陽(yáng)縣第一中學(xué)數(shù)學(xué)高三上期末復(fù)習(xí)檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.2.中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問(wèn)題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見(jiàn)次日行里數(shù),請(qǐng)公仔細(xì)算相還.”意思為有一個(gè)人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達(dá)目的地,請(qǐng)問(wèn)第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里3.如圖網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗線(xiàn)畫(huà)出的是某幾何體的三視圖,則該幾何體的所有棱中最長(zhǎng)棱的長(zhǎng)度為()A. B. C. D.4.下列與的終邊相同的角的表達(dá)式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)5.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線(xiàn)畫(huà)出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.6.已知雙曲線(xiàn)C:()的左、右焦點(diǎn)分別為,過(guò)的直線(xiàn)l與雙曲線(xiàn)C的左支交于A、B兩點(diǎn).若,則雙曲線(xiàn)C的漸近線(xiàn)方程為()A. B. C. D.7.在四邊形中,,,,,,點(diǎn)在線(xiàn)段的延長(zhǎng)線(xiàn)上,且,點(diǎn)在邊所在直線(xiàn)上,則的最大值為()A. B. C. D.8.已知函數(shù),若關(guān)于的方程恰好有3個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.9.已知函數(shù)且的圖象恒過(guò)定點(diǎn),則函數(shù)圖象以點(diǎn)為對(duì)稱(chēng)中心的充要條件是()A. B.C. D.10.已知函數(shù)的最小正周期為的圖象向左平移個(gè)單位長(zhǎng)度后關(guān)于軸對(duì)稱(chēng),則的單調(diào)遞增區(qū)間為()A. B.C. D.11.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或812.已知函數(shù)若恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)實(shí)數(shù)x,y滿(mǎn)足,則點(diǎn)表示的區(qū)域面積為_(kāi)_____.14.三棱錐中,點(diǎn)是斜邊上一點(diǎn).給出下列四個(gè)命題:①若平面,則三棱錐的四個(gè)面都是直角三角形;②若,,,平面,則三棱錐的外接球體積為;③若,,,在平面上的射影是內(nèi)心,則三棱錐的體積為2;④若,,,平面,則直線(xiàn)與平面所成的最大角為.其中正確命題的序號(hào)是__________.(把你認(rèn)為正確命題的序號(hào)都填上)15.的展開(kāi)式中常數(shù)項(xiàng)是___________.16.的展開(kāi)式中的常數(shù)項(xiàng)為_(kāi)______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在三棱柱中,平面ABC.(1)證明:平面平面(2)求二面角的余弦值.18.(12分)已知是等差數(shù)列,滿(mǎn)足,,數(shù)列滿(mǎn)足,,且是等比數(shù)列.(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19.(12分)如圖,在棱長(zhǎng)為的正方形中,,分別為,邊上的中點(diǎn),現(xiàn)以為折痕將點(diǎn)旋轉(zhuǎn)至點(diǎn)的位置,使得為直二面角.(1)證明:;(2)求與面所成角的正弦值.20.(12分)△ABC的內(nèi)角的對(duì)邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長(zhǎng).21.(12分)已知函數(shù),.(1)若不等式的解集為,求的值.(2)若當(dāng)時(shí),,求的取值范圍.22.(10分)設(shè)函數(shù),其中是自然對(duì)數(shù)的底數(shù).(Ⅰ)若在上存在兩個(gè)極值點(diǎn),求的取值范圍;(Ⅱ)若,函數(shù)與函數(shù)的圖象交于,且線(xiàn)段的中點(diǎn)為,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

根據(jù)幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據(jù)正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.2.B【解析】

人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,計(jì)算,代入得到答案.【詳解】由題意可知此人每天走的路程構(gòu)成公比為的等比數(shù)列,設(shè)此人第一天走的路程為,則,解得,從而可得,故.故選:.本題考查了等比數(shù)列的應(yīng)用,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.3.C【解析】

利用正方體將三視圖還原,觀(guān)察可得最長(zhǎng)棱為AD,算出長(zhǎng)度.【詳解】幾何體的直觀(guān)圖如圖所示,易得最長(zhǎng)的棱長(zhǎng)為故選:C.本題考查了三視圖還原幾何體的問(wèn)題,其中利用正方體作襯托是關(guān)鍵,屬于基礎(chǔ)題.4.C【解析】

利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫(xiě)成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C(1)本題主要考查終邊相同的角的公式,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.5.C【解析】

畫(huà)出幾何體的直觀(guān)圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可.【詳解】解:幾何體的直觀(guān)圖如圖,是正方體的一部分,P?ABC,正方體的棱長(zhǎng)為2,

該幾何體的表面積:.故選C.本題考查三視圖求解幾何體的直觀(guān)圖的表面積,判斷幾何體的形狀是解題的關(guān)鍵.6.D【解析】

設(shè),利用余弦定理,結(jié)合雙曲線(xiàn)的定義進(jìn)行求解即可.【詳解】設(shè),由雙曲線(xiàn)的定義可知:因此再由雙曲線(xiàn)的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線(xiàn)的漸近線(xiàn)方程為:.故選:D本題考查了雙曲線(xiàn)的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線(xiàn)的漸近線(xiàn)方程,考查了數(shù)學(xué)運(yùn)算能力.7.A【解析】

依題意,如圖以為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,表示出點(diǎn)的坐標(biāo),根據(jù)求出的坐標(biāo),求出邊所在直線(xiàn)的方程,設(shè),利用坐標(biāo)表示,根據(jù)二次函數(shù)的性質(zhì)求出最大值.【詳解】解:依題意,如圖以為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,由,,,,,,,因?yàn)辄c(diǎn)在線(xiàn)段的延長(zhǎng)線(xiàn)上,設(shè),解得,所在直線(xiàn)的方程為因?yàn)辄c(diǎn)在邊所在直線(xiàn)上,故設(shè)當(dāng)時(shí)故選:本題考查向量的數(shù)量積,關(guān)鍵是建立平面直角坐標(biāo)系,屬于中檔題.8.D【解析】

討論,,三種情況,求導(dǎo)得到單調(diào)區(qū)間,畫(huà)出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當(dāng)時(shí),,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當(dāng)時(shí),;當(dāng)時(shí),,,函數(shù)單調(diào)遞減;如圖所示畫(huà)出函數(shù)圖像,則,故.故選:.本題考查了利用導(dǎo)數(shù)求函數(shù)的零點(diǎn)問(wèn)題,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.9.A【解析】

由題可得出的坐標(biāo)為,再利用點(diǎn)對(duì)稱(chēng)的性質(zhì),即可求出和.【詳解】根據(jù)題意,,所以點(diǎn)的坐標(biāo)為,又,所以.故選:A.本題考查指數(shù)函數(shù)過(guò)定點(diǎn)問(wèn)題和函數(shù)對(duì)稱(chēng)性的應(yīng)用,屬于基礎(chǔ)題.10.D【解析】

先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質(zhì)得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間得出函數(shù)的單調(diào)遞增區(qū)間,可得選項(xiàng).【詳解】因?yàn)楹瘮?shù)的最小正周期是,所以,即,所以,的圖象向左平移個(gè)單位長(zhǎng)度后得到的函數(shù)解析式為,由于其圖象關(guān)于軸對(duì)稱(chēng),所以,又,所以,所以,所以,因?yàn)榈倪f增區(qū)間是:,,由,,得:,,所以函數(shù)的單調(diào)遞增區(qū)間為().故選:D.本題主要考查正弦型函數(shù)的周期性,對(duì)稱(chēng)性,單調(diào)性,圖象的平移,在進(jìn)行圖象的平移時(shí),注意自變量的系數(shù),屬于中檔題.11.B【解析】

根據(jù)函數(shù)的對(duì)稱(chēng)軸以及函數(shù)值,可得結(jié)果.【詳解】函數(shù),若,則的圖象關(guān)于對(duì)稱(chēng),又,所以或,所以的值是7或3.故選:B.本題考查的是三角函數(shù)的概念及性質(zhì)和函數(shù)的對(duì)稱(chēng)性問(wèn)題,屬基礎(chǔ)題12.D【解析】

由恒成立,等價(jià)于的圖像在的圖像的上方,然后作出兩個(gè)函數(shù)的圖像,利用數(shù)形結(jié)合的方法求解答案.【詳解】因?yàn)橛珊愠闪ⅲ謩e作出及的圖象,由圖知,當(dāng)時(shí),不符合題意,只須考慮的情形,當(dāng)與圖象相切于時(shí),由導(dǎo)數(shù)幾何意義,此時(shí),故.故選:D此題考查的是函數(shù)中恒成立問(wèn)題,利用了數(shù)形結(jié)合的思想,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先畫(huà)出滿(mǎn)足條件的平面區(qū)域,求出交點(diǎn)坐標(biāo),利用定積分即可求解.【詳解】畫(huà)出實(shí)數(shù)x,y滿(mǎn)足表示的平面區(qū)域,如圖(陰影部分):則陰影部分的面積,故答案為:本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎(chǔ)題.14.①②③【解析】

對(duì)①,由線(xiàn)面平行的性質(zhì)可判斷正確;對(duì)②,三棱錐外接球可看作正方體的外接球,結(jié)合外接球半徑公式即可求解;對(duì)③,結(jié)合題意作出圖形,由勾股定理和內(nèi)接圓對(duì)應(yīng)面積公式求出錐體的高,則可求解;對(duì)④,由動(dòng)點(diǎn)分析可知,當(dāng)點(diǎn)與點(diǎn)重合時(shí),直線(xiàn)與平面所成的角最大,結(jié)合幾何關(guān)系可判斷錯(cuò)誤;【詳解】對(duì)于①,因?yàn)槠矫?,所以,,,又,所以平面,所以,故四個(gè)面都是直角三角形,∴①正確;對(duì)于②,若,,,平面,∴三棱錐的外接球可以看作棱長(zhǎng)為4的正方體的外接球,∴,,∴體積為,∴②正確;對(duì)于③,設(shè)內(nèi)心是,則平面,連接,則有,又內(nèi)切圓半徑,所以,,故,∴三棱錐的體積為,∴③正確;對(duì)于④,∵若,平面,則直線(xiàn)與平面所成的角最大時(shí),點(diǎn)與點(diǎn)重合,在中,,∴,即直線(xiàn)與平面所成的最大角為,∴④不正確,故答案為:①②③.本題考查立體幾何基本關(guān)系的應(yīng)用,線(xiàn)面垂直的性質(zhì)及判定、錐體體積、外接球半徑求解,線(xiàn)面角的求解,屬于中檔題15.-160【解析】試題分析:常數(shù)項(xiàng)為.考點(diǎn):二項(xiàng)展開(kāi)式系數(shù)問(wèn)題.16.【解析】

寫(xiě)出展開(kāi)式的通項(xiàng)公式,考慮當(dāng)?shù)闹笖?shù)為零時(shí),對(duì)應(yīng)的值即為常數(shù)項(xiàng).【詳解】的展開(kāi)式通項(xiàng)公式為:,令,所以,所以常數(shù)項(xiàng)為.

故答案為:.本題考查二項(xiàng)展開(kāi)式中指定項(xiàng)系數(shù)的求解,難度較易.解答問(wèn)題的關(guān)鍵是,能通過(guò)展開(kāi)式通項(xiàng)公式分析常數(shù)項(xiàng)對(duì)應(yīng)的取值.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)證明見(jiàn)解析(2)【解析】

(1)證明平面即平面平面得證;(2)分別以所在直線(xiàn)為x軸,y軸.軸,建立如圖所示的空間直角坐標(biāo)系C-xyz,再利用向量方法求二面角的余弦值.【詳解】(1)證明:因?yàn)槠矫鍭BC,所以因?yàn)?所以.即又.所以平面因?yàn)槠矫?所以平面平面(2)解:由題可得兩兩垂直,所以分別以所在直線(xiàn)為x軸,y軸.軸,建立如圖所示的空間直角坐標(biāo)系C-xyz,則,所以設(shè)平面的一個(gè)法向量為,由.得令,得又平面,所以平面的一個(gè)法向量為.所以二面角的余弦值為.本題主要考查空間幾何位置關(guān)系的證明,考查二面角的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.18.(1),;(2)【解析】試題分析:(1)利用等差數(shù)列,等比數(shù)列的通項(xiàng)公式先求得公差和公比,即得到結(jié)論;(2)利用分組求和法,由等差數(shù)列及等比數(shù)列的前n項(xiàng)和公式即可求得數(shù)列前n項(xiàng)和.試題解析:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,由題意得d===1.∴an=a1+(n﹣1)d=1n設(shè)等比數(shù)列{bn﹣an}的公比為q,則q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵數(shù)列{1n}的前n項(xiàng)和為n(n+1),數(shù)列{2n﹣1}的前n項(xiàng)和為1×=2n﹣1,∴數(shù)列{bn}的前n項(xiàng)和為;考點(diǎn):1.等差數(shù)列性質(zhì)的綜合應(yīng)用;2.等比數(shù)列性質(zhì)的綜合應(yīng)用;1.數(shù)列求和.19.(1)證明見(jiàn)詳解;(2)【解析】

(1)在折疊前的正方形ABCD中,作出對(duì)角線(xiàn)AC,BD,由正方形性質(zhì)知,又//,則于點(diǎn)H,則由直二面角可知面,故.又,則面,故命題得證;(2)作出線(xiàn)面角,在直角三角形中求解該角的正弦值.【詳解】解:(1)證明:在正方形中,連結(jié)交于.因?yàn)?/,故可得,即又旋轉(zhuǎn)不改變上述垂直關(guān)系,且平面,面,又面,所以(2)因?yàn)闉橹倍娼?,故平面平?又其交線(xiàn)為,且平面,故可得底面,連結(jié),則即為與面所成角,連結(jié)交于,在中,,在中,.所以與面所成角的正弦值為.本題考查了線(xiàn)面垂直的證明與性質(zhì),利用定義求線(xiàn)面角,屬于中檔題.20.(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計(jì)算出,從而求出角,根據(jù)題設(shè)和余弦定理可以求出和的值,從而求出的周長(zhǎng)為.試題解析:(1)由題設(shè)得,即.由正弦定理得.故.(2)由題設(shè)及(1)得,即.所以,故.由題設(shè)得,即.由余弦定理得,即,得.故的周長(zhǎng)為.點(diǎn)睛:在處理解三角形問(wèn)題時(shí),要注意抓住題目所給的條件,當(dāng)題設(shè)中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,有時(shí)需將角的關(guān)系轉(zhuǎn)化為邊的關(guān)系;解三角形問(wèn)題常見(jiàn)的一種考題是“已知一條邊的長(zhǎng)度和它所對(duì)的角,求面積或周長(zhǎng)的取值范圍”或者“已知一條邊的長(zhǎng)度和它所對(duì)的角,再有另外一個(gè)條件,求面積或周長(zhǎng)的值”,這類(lèi)問(wèn)題的通法思路是:全部轉(zhuǎn)化為角的關(guān)系,建立函數(shù)關(guān)系式,如,從而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可.21.(1);(2)【解析】試題分析:(1)求得的解集,根據(jù)集合相等,列出方程組,即可求解的值;(2)①當(dāng)時(shí),恒成立,②當(dāng)時(shí),轉(zhuǎn)化為,設(shè),求得函數(shù)的最小值,即可求解的取值范圍.試題解析:(1)由,得,因?yàn)椴坏仁降慕饧癁椋?,故不等式可化為,解得,所以,解?(2)①當(dāng)時(shí),恒成立,所以.②當(dāng)時(shí),可化為,設(shè),則,所以當(dāng)時(shí),,所以.綜上,的取值范圍是.22.(Ⅰ);(Ⅱ)詳見(jiàn)解析.【解析】

(Ⅰ)依題意在上存在兩個(gè)極值點(diǎn),等價(jià)于在有兩個(gè)不等實(shí)根,由參變分類(lèi)可得,令,利用導(dǎo)數(shù)研究的單調(diào)性、

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論