版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025-2026學年吉林省長春市第十九中學高三數(shù)學第一學期期末學業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.2.已知函數(shù),則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關(guān)于直線對稱 D.的圖象關(guān)于點對稱3.已知集合,,,則()A. B. C. D.4.已知函數(shù)則函數(shù)的圖象的對稱軸方程為()A. B.C. D.5.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.6.若,則的虛部是A.3 B. C. D.7.已知正項數(shù)列滿足:,設(shè),當最小時,的值為()A. B. C. D.8.已知定義在上的函數(shù)滿足,且當時,,則方程的最小實根的值為()A. B. C. D.9.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件10.若點x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則A.-3,1 B.-3,5 C.-∞,-311.一小商販準備用元錢在一批發(fā)市場購買甲、乙兩種小商品,甲每件進價元,乙每件進價元,甲商品每賣出去件可賺元,乙商品每賣出去件可賺元.該商販若想獲取最大收益,則購買甲、乙兩種商品的件數(shù)應(yīng)分別為()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件12.地球上的風能取之不盡,用之不竭.風能是淸潔能源,也是可再生能源.世界各國致力于發(fā)展風力發(fā)電,近10年來,全球風力發(fā)電累計裝機容量連年攀升,中國更是發(fā)展迅猛,2014年累計裝機容量就突破了,達到,中國的風力發(fā)電技術(shù)也日臻成熟,在全球范圍的能源升級換代行動中體現(xiàn)出大國的擔當與決心.以下是近10年全球風力發(fā)電累計裝機容量與中國新增裝機容量圖.根據(jù)所給信息,正確的統(tǒng)計結(jié)論是()A.截止到2015年中國累計裝機容量達到峰值B.10年來全球新增裝機容量連年攀升C.10年來中國新增裝機容量平均超過D.截止到2015年中國累計裝機容量在全球累計裝機容量中占比超過二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域為____.14.如圖,某市一學校位于該市火車站北偏東方向,且,已知是經(jīng)過火車站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學校道路,其中,,以學校為圓心,半徑為的四分之一圓弧分別與相切于點.當?shù)卣顿Y開發(fā)區(qū)域發(fā)展經(jīng)濟,其中分別在公路上,且與圓弧相切,設(shè),的面積為.(1)求關(guān)于的函數(shù)解析式;(2)當為何值時,面積為最小,政府投資最低?15.函數(shù)的圖象在處的切線與直線互相垂直,則_____.16.在正方體中,已知點在直線上運動,則下列四個命題中:①三棱錐的體積不變;②;③當為中點時,二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角的對邊分別為,且.(1)求;(2)若,點為邊的中點,且,求的面積.18.(12分)已知函數(shù),.(1)證明:函數(shù)的極小值點為1;(2)若函數(shù)在有兩個零點,證明:.19.(12分)已知函數(shù).當時,求不等式的解集;,,求a的取值范圍.20.(12分)如圖,橢圓的長軸長為,點、、為橢圓上的三個點,為橢圓的右端點,過中心,且,.(1)求橢圓的標準方程;(2)設(shè)、是橢圓上位于直線同側(cè)的兩個動點(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.21.(12分)已知直線的參數(shù)方程:(為參數(shù))和圓的極坐標方程:(1)將直線的參數(shù)方程化為普通方程,圓的極坐標方程化為直角坐標方程;(2)已知點,直線與圓相交于、兩點,求的值.22.(10分)已知集合,集合.(1)求集合;(2)若,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由正弦定理化簡已知等式可得,結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.2.D【解析】
先將函數(shù)化為,再由三角函數(shù)的性質(zhì),逐項判斷,即可得出結(jié)果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數(shù)對稱軸可得:解得:,當,,故C正確;對于D,正弦函數(shù)對稱中心的橫坐標為:解得:若圖象關(guān)于點對稱,則解得:,故D錯誤;故選:D.本題考查三角恒等變換,三角函數(shù)的性質(zhì),熟記三角函數(shù)基本公式和基本性質(zhì),考查了分析能力和計算能力,屬于基礎(chǔ)題.3.A【解析】
求得集合中函數(shù)的值域,由此求得,進而求得.【詳解】由,得,所以,所以.故選:A本小題主要考查函數(shù)值域的求法,考查集合補集、交集的概念和運算,屬于基礎(chǔ)題.4.C【解析】
,將看成一個整體,結(jié)合的對稱性即可得到答案.【詳解】由已知,,令,得.故選:C.本題考查余弦型函數(shù)的對稱性的問題,在處理余弦型函數(shù)的性質(zhì)時,一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.5.C【解析】
畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,
該幾何體的表面積:.故選C.本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關(guān)鍵.6.B【解析】
因為,所以的虛部是.故選B.7.B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當且僅當時取得最小值,此時.故選:B本題主要考查了數(shù)列中的最值問題,遞推公式的應(yīng)用,基本不等式求最值,考查了學生的運算求解能力.8.C【解析】
先確定解析式求出的函數(shù)值,然后判斷出方程的最小實根的范圍結(jié)合此時的,通過計算即可得到答案.【詳解】當時,,所以,故當時,,所以,而,所以,又當時,的極大值為1,所以當時,的極大值為,設(shè)方程的最小實根為,,則,即,此時令,得,所以最小實根為411.故選:C.本題考查函數(shù)與方程的根的最小值問題,涉及函數(shù)極大值、函數(shù)解析式的求法等知識,本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.9.C【解析】
根據(jù)線面平行的性質(zhì)定理和判定定理判斷與的關(guān)系即可得到答案.【詳解】若,根據(jù)線面平行的性質(zhì)定理,可得;若,根據(jù)線面平行的判定定理,可得.故選:C.本題主要考查了線面平行的性質(zhì)定理和判定定理,屬于基礎(chǔ)題.10.D【解析】
畫出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)【詳解】畫出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內(nèi)的點(x,y)和定點P(2,-1)設(shè)k=y+1x-2,結(jié)合圖形可得k≥k由題意得點A,B的坐標分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.解答本題的關(guān)鍵有兩個:一是根據(jù)數(shù)形結(jié)合的方法求解問題,即把y+1x-211.D【解析】
由題意列出約束條件和目標函數(shù),數(shù)形結(jié)合即可解決.【詳解】設(shè)購買甲、乙兩種商品的件數(shù)應(yīng)分別,利潤為元,由題意,畫出可行域如圖所示,顯然當經(jīng)過時,最大.故選:D.本題考查線性目標函數(shù)的線性規(guī)劃問題,解決此類問題要注意判斷,是否是整數(shù),是否是非負數(shù),并準確的畫出可行域,本題是一道基礎(chǔ)題.12.D【解析】
先列表分析近10年全球風力發(fā)電新增裝機容量,再結(jié)合數(shù)據(jù)研究單調(diào)性、平均值以及占比,即可作出選擇.【詳解】年份2009201020112012201320142015201620172018累計裝機容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增裝機容量39.140.645.135.851.863.854.953.551.4中國累計裝機裝機容量逐年遞增,A錯誤;全球新增裝機容量在2015年之后呈現(xiàn)下降趨勢,B錯誤;經(jīng)計算,10年來中國新增裝機容量平均每年為,選項C錯誤;截止到2015年中國累計裝機容量,全球累計裝機容量,占比為,選項D正確.故選:D本題考查條形圖,考查基本分析求解能力,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】由題意得,解得定義域為.14.(1);(2).【解析】
(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設(shè),又,故,,進而表示直線的方程,由直線與圓相切構(gòu)建關(guān)系化簡整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數(shù)值域可求得t的取值范圍,進而對原面積的函數(shù)用含t的表達式換元,再令進行換元,并構(gòu)建新的函數(shù),由二次函數(shù)性質(zhì)即可求得最小值.【詳解】解:(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設(shè),又,故,.所以直線的方程為,即.因為直線與圓相切,所以.因為點在直線的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調(diào)遞減.所以,當,即時,取得最大值,取最小值.答:當時,面積為最小,政府投資最低.本題考查三角函數(shù)的實際應(yīng)用,應(yīng)優(yōu)先結(jié)合實際建立合適的數(shù)學模型,再按模型求最值,屬于難題.15.1.【解析】
求函數(shù)的導數(shù),根據(jù)導數(shù)的幾何意義結(jié)合直線垂直的直線斜率的關(guān)系建立方程關(guān)系進行求解即可.【詳解】函數(shù)的圖象在處的切線與直線垂直,函數(shù)的圖象在的切線斜率本題正確結(jié)果:本題主要考查直線垂直的應(yīng)用以及導數(shù)的幾何意義,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵.16.①②④【解析】
①∵,∴平面
,得出上任意一點到平面的距離相等,所以判斷命題①;②由已知得出點P在面上的射影在上,根據(jù)線面垂直的判定和性質(zhì)或三垂線定理,可判斷命題②;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,運用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),根據(jù)對稱性和兩點之間線段最短,可求得當點在點時,在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面
,所以上任意一點到平面的距離相等,所以三棱錐的體積不變,所以①正確;
②在直線上運動時,點P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當為中點時,以點D為坐標原點,建立空間直角系,如下圖所示,設(shè)正方體的棱長為2.則:,,所以,設(shè)面的法向量為,則,即,令,則,設(shè)面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點,做點關(guān)于面對稱的點,使得點在平面內(nèi),則,所以,當點在點時,在一條直線上,取得最小值.因為正方體的棱長為2,所以設(shè)點的坐標為,,,所以,所以,又所以,所以,,,故④正確.
故答案為:①②④.本題考查空間里的線線,線面,面面關(guān)系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運用對稱的思想,兩點之間線段最短進行求解,屬于難度題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數(shù)量積公式進行求解,再代入可解得,再代入面積公式求解即可.【詳解】(1)由,可得,由余弦定理可得,故.(2)因為為的中線,所以,兩邊同時平方可得,故.因為,所以.所以的面積.本題主要考查了利用正余弦定理與面積公式求解三角形的問題,同時也考查了向量在解三角形中的運用,屬于中檔題.18.(1)見解析(2)見解析【解析】
(1)利用導函數(shù)的正負確定函數(shù)的增減.(2)函數(shù)在有兩個零點,即方程在區(qū)間有兩解,令通過二次求導確定函數(shù)單調(diào)性證明參數(shù)范圍.【詳解】解:(1)證明:因為,當時,,,所以在區(qū)間遞減;當時,,所以,所以在區(qū)間遞增;且,所以函數(shù)的極小值點為1(2)函數(shù)在有兩個零點,即方程在區(qū)間有兩解,令,則令,則,所以在單調(diào)遞增,又,故存在唯一的,使得,即,所以在單調(diào)遞減,在區(qū)間單調(diào)遞增,且,又因為,所以,方程關(guān)于的方程在有兩個零點,由的圖象可知,,即.本題考查利用導數(shù)研究函數(shù)單調(diào)性,確定函數(shù)的極值,利用二次求導,零點存在性定理確定參數(shù)范圍,屬于難題.19.(1);(2).【解析】
(1)當時,,①當時,,令,即,解得,②當時,,顯然成立,所以,③當時,,令,即,解得,綜上所述,不等式的解集為.(2)因為,因為,有成立,所以只需,解得,所以a的取值范圍為.絕對值不等式的解法:法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.20.(1);(2)詳見解析.【解析】試題分析:(1)利用題中條件先得出的值,然后利用條件,結(jié)合橢圓的對稱性得到點的坐標,然后將點的坐標代入橢圓方程求出的值,從而確定橢圓的方程;(2)將條件得到直線與的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職糧油檢驗檢測技術(shù)(糧油檢驗基礎(chǔ))試題及答案
- 2025年中職生物(植物生理學基礎(chǔ))試題及答案
- 2025年中職(會計綜合實訓)全盤賬務(wù)處理階段測試試題及答案
- 2025年大學越野滑雪運動與管理(越野滑雪技術(shù))試題及答案
- 2025年大學大四(出版學)出版物編輯出版綜合評估試題及答案
- 2026年人力資源外包(員工派遣管理)試題及答案
- 2025年高職測繪工程技術(shù)(測繪工程實操)試題及答案
- 2025年大學三年級(公共政策)公共政策分析試題及答案
- 2025年高職現(xiàn)代農(nóng)業(yè)技術(shù)(智慧農(nóng)業(yè)設(shè)備應(yīng)用)試題及答案
- 2025年高職醫(yī)學美容技術(shù)(醫(yī)學美容技術(shù))試題及答案
- 2026年南通科技職業(yè)學院高職單招職業(yè)適應(yīng)性測試備考試題含答案解析
- 中遠海運集團筆試題目2026
- 2026年中國熱帶農(nóng)業(yè)科學院橡膠研究所高層次人才引進備考題庫含答案詳解
- 妝造店化妝品管理制度規(guī)范
- 2025-2026學年四年級英語上冊期末試題卷(含聽力音頻)
- 浙江省2026年1月普通高等學校招生全國統(tǒng)一考試英語試題(含答案含聽力原文含音頻)
- 2026屆川慶鉆探工程限公司高校畢業(yè)生春季招聘10人易考易錯模擬試題(共500題)試卷后附參考答案
- 基本農(nóng)田保護施工方案
- 股骨頸骨折患者營養(yǎng)護理
- 二級醫(yī)院醫(yī)療設(shè)備配置標準
- 2026年廣西出版?zhèn)髅郊瘓F有限公司招聘(98人)考試參考題庫及答案解析
評論
0/150
提交評論