版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》綜合訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖菱形ABCD,對角線AC,BD相交于點O,若BD=8,AC=6,則AB的長是()A.5 B.6 C.8 D.102、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點,則△AEF的面積為()A.2 B.3 C.4 D.53、如圖是用若干個全等的等腰梯形拼成的圖形,下列說法錯誤的是()A.梯形的下底是上底的兩倍 B.梯形最大角是C.梯形的腰與上底相等 D.梯形的底角是4、如圖,把正方形紙片ABCD沿對邊中點所在的直線對折后展開,折痕為MN,再過點B折疊紙片,使點A落在MN上的點F處,折痕為BE,若AB的長為2,則FM的長為()A.2 B. C. D.15、如圖,矩形ABCD的面積為1cm2,對角線交于點O;以AB、AO為鄰邊作平行四邊形AOC1B,對角線交于點O1;以AB、AO1為鄰邊作平行四邊形AO1C2B,…;依此類推,則平行四邊形AO2014C2015B的面積為()cmA.
B.
C.
D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,△ABC中,AC=BC=3,AB=2,將它沿AB翻折得到△ABD,點P、E、F分別為線段AB、AD、DB上的動點,則PE+PF的最小值是_____.2、在平行四邊形ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,AB=6,EF=2,則BC的長為_____.3、如圖,正方形ABCD的面積為18,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線AC上有一點P,使PD+PE的和最小,則這個最小值為_____.4、在五邊形紙片ABCDE中,AB=2,∠A=120°,將五邊形紙片ABCDE沿BD折疊,點C落在點P處;在AE上取一點Q,將ABQ,EDQ分別沿BQ,DQ折疊,點A,E恰好落在點P處,如圖1.(1)∠BPQ=______°;(2)∠BCD+∠QED=_______°;(3)如圖2,當四邊形BCDP是菱形,且Q,P,C三點共線時,BQ=_______.5、如圖,在四邊形ABCD中,AD//BC,∠B=90°,DE⊥BC于點E,AB=8cm,AD=24cm,BC=26cm,點P從點A出發(fā),沿邊AD以1cm/s的速度向點D運動,與此同時,點Q從點C出發(fā),沿邊CB以3cm/s的速度向點B運動.當其中一個動點到達端點時,另一個動點也隨之停止運動.連接PQ,過點P作PF⊥BC于點F,則當運動到第__________s時,△DEC≌△PFQ.三、解答題(5小題,每小題10分,共計50分)1、如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對角線AC的三等分點,連接BE,DF.證明BE=DF.2、△ABC和△GEF都是等邊三角形.問題背景:如圖1,點E與點C重合且B、C、G三點共線.此時△BFC可以看作是△AGC經(jīng)過平移、軸對稱或旋轉(zhuǎn)得到.請直接寫出得到△BFC的過程.遷移應(yīng)用:如圖2,點E為AC邊上一點(不與點A,C重合),點F為△ABC中線CD上一點,延長GF交BC于點H,求證:.聯(lián)系拓展:如圖3,AB=12,點D,E分別為AB、AC的中點,M為線段BD上靠近點B的三等分點,點F在射線DC上運動(E、F、G三點按順時針排列).當最小時,則△MDG的面積為_______.3、在如圖所示的4×3網(wǎng)格中,每個小正方形的邊長均為1,正方形頂點叫格點,連接兩個網(wǎng)格格點的線段叫網(wǎng)格線段.點A固定在格點上.(1)若a是圖中能用網(wǎng)格線段表示的最小無理數(shù),b是圖中能用網(wǎng)格線段表示的最大無理數(shù),則a=,b=,=;(2)請在網(wǎng)格中畫出頂點在格點上且邊長為的所有菱形ABCD,你畫出的菱形面積分別為,.4、如圖,正方形網(wǎng)格中每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.試畫出一個頂點都在格點上,且面積為10的正方形.5、如圖,在?ABCD中,對角線AC,BD交于點O,E是BD延長線上一點,且△ACE是等邊三角形.(1)求證:四邊形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四邊形ABCD的面積.-參考答案-一、單選題1、A【解析】【分析】由菱形的性質(zhì)可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.【詳解】解:∵四邊形ABCD是菱形,AC=6,BD=8,∴OA=OC=3,OB=OD=4,AO⊥BO,在Rt△AOB中,由勾股定理得:,故選:A.【點睛】本題考查了菱形的性質(zhì)、勾股定理等知識;熟練掌握菱形對角線互相垂直且平分的性質(zhì)是解題的關(guān)鍵.2、B【解析】【分析】連接AC,由平行四邊形的性質(zhì)可得,再由E、F分別是BC,CD的中點,即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點,∴,,,∴,故選B.【點睛】本題主要考查了平行四邊形的性質(zhì),與三角形中線有關(guān)的面積問題,解題的關(guān)鍵在于能夠熟練掌握平行四邊形的性質(zhì).3、D【解析】【分析】如圖(見解析),先根據(jù)平角的定義可得,再根據(jù)可求出,由此可判斷選項;先根據(jù)等邊三角形的判定與性質(zhì)可得,再根據(jù)平行四邊形的判定可得四邊形是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得,然后根據(jù)菱形的判定可得四邊形是菱形,根據(jù)菱形的性質(zhì)可得,最后根據(jù)線段的和差、等量代換可得,由此可判斷選項.【詳解】解:如圖,,,,,梯形是等腰梯形,,則梯形最大角是,選項B正確;沒有指明哪個角是底角,梯形的底角是或,選項D錯誤;如圖,連接,,是等邊三角形,,,點共線,,,,四邊形是平行四邊形,,,,,,四邊形是菱形,,,,選項A、C正確;故選:D.【點睛】本題考查了等腰梯形、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識點,熟練掌握各判定與性質(zhì)是解題關(guān)鍵.4、B【解析】【分析】由折疊的性質(zhì)可得,∠BMN=90°,F(xiàn)B=AB=2,由此利用勾股定理求解即可.【詳解】解:∵把正方形紙片ABCD沿對邊中點所在的直線對折后展開,折痕為MN,AB=2,∴,∠BMN=90°,∵四邊形ABCD為正方形,AB=2,過點B折疊紙片,使點A落在MN上的點F處,∴FB=AB=2,則在Rt△BMF中,,故選B.【點睛】本題主要考查了正方形與折疊,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).5、C【解析】【分析】根據(jù)“同底等高”的原則可知平行四邊形AOC1B底邊AB上的高等于BC的,則有平行四邊形AOC1B的面積,平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,則有平行四邊形ABC3O2的面積,…;由此規(guī)律可進行求解.【詳解】解:∵O1為矩形ABCD的對角線的交點,∴平行四邊形AOC1B底邊AB上的高等于BC的,∴平行四邊形AOC1B的面積=×1=,∵平行四邊形AO1C2B的對角線交于點O2,∴平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,∴平行四邊形ABC3O2的面積=××1=,…,依此類推,平行四邊形ABC2014O2015的面積=cm2.故答案為:C.【點睛】本題主要考查矩形的性質(zhì)與平行四邊形的性質(zhì),熟練掌握矩形的性質(zhì)與平行四邊形的性質(zhì)是解題的關(guān)鍵.二、填空題1、##【解析】【分析】首先證明四邊四邊形ABCD是菱形,作出F關(guān)于AB的對稱點M,再過M作ME′⊥AD,交AB于點P′,此時P′E′+P′F最小,求出ME即可.【詳解】解:作出F關(guān)于AB的對稱點M,再過M作ME′⊥AD,交AB于點P′,此時P′E′+P′F最小,此時P′E′+P′F=ME′,過點A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四邊形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=AB=1,由勾股定理可得,CH=,∵×AB×CH=×BC×AN,可得AN=,∴ME′=AN=,∴PE+PF最小為.故答案為:.【點睛】本題考查翻折變換,等腰三角形的性質(zhì),軸對稱?最短問題等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.2、10或14##14或10【解析】【分析】利用BF平分∠ABC,CE平分∠BCD,以及平行關(guān)系,分別求出、,通過和是否相交,分兩類情況討論,最后通過邊之間的關(guān)系,求出的長即可.【詳解】解:四邊形ABCD是平行四邊形,,,,,,BF平分∠ABC,CE平分∠BCD,,,,,由等角對等邊可知:,,情況1:當與相交時,如下圖所示:,,,情況2:當與不相交時,如下圖所示:,,故答案為:10或14.【點睛】本題主要是考查了平行四邊形的性質(zhì),熟練運用平行關(guān)系+角平分線證邊相等,是解決本題的關(guān)鍵,還要注意根據(jù)和是否相交,本題分兩類情況,如果沒考慮仔細,會漏掉一種情況.3、【解析】【分析】由正方形的對稱性可知,PB=PD,當B、P、E共線時PD+PE最小,求出BE即可.【詳解】解:∵正方形中B與D關(guān)于AC對稱,∴PB=PD,∴PD+PE=PB+PE=BE,此時PD+PE最小,∵正方形ABCD的面積為18,△ABE是等邊三角形,∴BE=3,∴PD+PE最小值是3,故答案為:3.【點睛】本題考查軸對稱求最短距離,熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.4、120240【解析】【分析】(1)由折疊的性質(zhì)可得∠A=∠BPQ=120°;(2)由周角的性質(zhì)可得∠BPD+∠QPD+∠BPQ=360°,即可求解;(3)由菱形的性質(zhì)可得BQ=QD,QH⊥BD,BH=DH,由“SSS”可證△ABQ≌△EDQ,可得∠AQB=∠BQP=∠EQD=∠PQD=45°,由直角三角形的性質(zhì)可求解.【詳解】解:(1)∵將五邊形紙片ABCDE沿BD折疊,∴∠A=∠BPQ=120°,∠QED=∠QPD,∠BCD=∠BPD,故答案為:120;(2)∵∠BPD+∠QPD+∠BPQ=360°,∴∠BPD+∠QPD=240°,∴∠BCD+∠QED=240°,故答案為:240;(3)如圖,連接PC,交BD于H,∵四邊形BPDC是菱形,∴PC是BD的垂直平分線,BP=PD=BC=CD,∵Q,P,C三點共線,∴QC是BD的垂直平分線,∴BQ=QD,QH⊥BD,BH=DH,由折疊可知:∠A=∠BPQ=120°,AB=BP=2=DE=DP,∠AQB=∠BQP,∠EQD=∠PQD,AQ=QP=QE,∴∠BPH=60°,∴∠PBH=30°,∴PHBP=1,BHPH,在△ABQ和△EDQ中,,∴△ABQ≌△EDQ(SSS),∴∠AQB=∠EQD,∴∠AQB=∠BQP=∠EQD=∠PQD,∵∠AQE=180°,∴∠AQB=∠BQP=∠EQD=∠PQD=45°,∴∠QBH=∠BQP=45°,∴BH=QH,∴BQBH,故答案為:.【點睛】本題考查了翻折變換,菱形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形的性質(zhì)等知識,掌握折疊的性質(zhì)是解題的關(guān)鍵.5、6或7【解析】【分析】分兩種情況進行討論,當在點的右側(cè)時,在點的左側(cè)時,根據(jù)△DEC≌△PFQ,可得,求解即可.【詳解】解:由題意可得,四邊形、為矩形,,、∴,∵△DEC≌△PFQ∴當在點的右側(cè)時,∴,解得當在點的左側(cè)時,∴,解得故答案為:或【點睛】此題考查了全等三角形的性質(zhì),矩形的判定與性質(zhì),解題的關(guān)鍵是根據(jù)題意,求得對應(yīng)線段的長,分情況討論列方程求解.三、解答題1、見詳解【分析】由題意易得AB=CD,AB∥CD,AE=CF,則有∠BAE=∠DCF,進而問題可求證.【詳解】證明:∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,∵E,F(xiàn)是對角線AC的三等分點,∴AE=CF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴BE=DF.【點睛】本題主要考查平行四邊形的性質(zhì)及全等三角形的性質(zhì)與判定,熟練掌握平行四邊形的性質(zhì)及全等三角形的性質(zhì)與判定是解題的關(guān)鍵.2、(1)以點C為旋轉(zhuǎn)中心將逆時針旋轉(zhuǎn)就得到;(2)見解析;(3).【分析】(1)只需要利用SAS證明△BCF≌△ACG即可得到答案;(2)法一:以為邊作,與的延長線交于點K,如圖,先證明,然后證明,得到,則,過點F作FM⊥BC于M,求出,即可推出,則,即:;法二:過F作,.先證明△FCN≌△FCM得到CM=CN,利用勾股定理和含30度角的直角三角形的性質(zhì)求出,再證明得到,則;(3)如圖3-1所示,連接,GM,AG,先證明△ADE是等邊三角形,得到DE=AE,即可證明得到,即點G在的角平分線所在直線上運動.過G作,則,最小即是最小,故當M、G、P三點共線時,最?。蝗鐖D3-2所示,過點G作GQ⊥AB于Q,連接DG,求出DM和QG的長即可求解.【詳解】(1)∵△ABC和△GEF都是等邊三角形,∴BC=AC,CF=CG,∠ACB=∠FCG=60°,∴∠ACB+∠ACF=∠FCG+∠ACF,∴∠FCB=∠GCA,∴△BCF≌△ACG(SAS),∴△BFC可以看作是△AGC繞點C逆時針旋轉(zhuǎn)60度所得;(2)法一:證明:以為邊作,與的延長線交于點K,如圖,∵和均為等邊三角形,∴,∠GFE=60°,∴,∴∠EFH+∠ACB=180°,∴,∵,∴.∵是等邊的中線,∴,∴,∴∴.在與中,∴,∴,∴,過點F作FM⊥BC于M,∴KM=CM,∵∠K=30°,∴∴,∴,∴,即:;法二證明:過F作,.∴是等邊的中線,∴,,∴△FCN≌△FCM(AAS),F(xiàn)C=2FN,∴CM=CN,,同法一,.在與中,∴∴,∴;(3)如圖3-1所示,連接,GM,AG,∵D,E分別是AB,AC的中點,∴DE是△ABC的中位線,CD⊥AB,∴DE∥BC,∠CDA=90°,∴∠ADE=∠ABC=60°,∠AED=∠ACB=60°,∴△ADE是等邊三角形,∠FDE=30°,∴DE=AE,∵△GEF是等邊三角形,∴EF=EG,∠GEF=60°,∴∠AEG=∠AED+∠DEG=∠FEG+∠DEG=∠FED,∴∴,即點G在的角平分線所在直線上運動.過G作,則,∴最小即是最小,∴當M、G、P三點共線時,最小如圖3-2所示,過點G作GQ⊥AB于Q,連接DG,∴QG=PG,∵∠MAP=60°,∠MPA=90°,∴∠AMP=30°,∴AM=2AP,∵D是AB的中點,AB=12,∴AD=BD=6,∵M是BD靠近B點的三等分點,∴MD=4,∴AM=10,∴AP=5,又∵∠PAG=30°,∴AG=2GP,∵,∴∴∴.【點睛】本題主要考查了全等三角形的性質(zhì)與判定,等邊三角形的性質(zhì)與判定,含30度角的直角三角形的性,勾股定理,解題的關(guān)鍵在于能夠正確作出輔助線求解.3、(1),2,;(2)4或5.【分析】(1)借助網(wǎng)格得出最大的無理數(shù)以及最小的無理數(shù),進而求出即可;(2)根據(jù)要求周長邊長為的菱形即可.【詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GB-T 37863.1-2019軌道交通 牽引電傳動系統(tǒng) 第1部分:城軌車輛》專題研究報告
- 《GBT 21789-2008石油產(chǎn)品和其他液體閃點的測定 阿貝爾閉口杯法》專題研究報告
- 《GBT 15825.6-2008金屬薄板成形性能與試驗方法 第6部分:錐杯試驗》專題研究報告
- 《GBT 2317.3-2008電力金具試驗方法 第3部分:熱循環(huán)試驗》專題研究報告
- 道路安全員初次培訓(xùn)課件
- 道路交通安全法課件
- 道縣摩托車安全駕駛培訓(xùn)課件
- 2021JACS指南:肺癌手術(shù)患者術(shù)前肺功能評估解讀課件
- 達州吉勤安全培訓(xùn)課件
- 邊檢業(yè)務(wù)培訓(xùn)課件
- 國家開放大學(xué)電大本科《流通概論》復(fù)習(xí)題庫
- 機關(guān)檔案匯編制度
- 2025年下半年四川成都溫江興蓉西城市運營集團有限公司第二次招聘人力資源部副部長等崗位5人參考考試題庫及答案解析
- 2026福建廈門市校園招聘中小學(xué)幼兒園中職學(xué)校教師346人筆試參考題庫及答案解析
- 2025年高職物流管理(物流倉儲管理實務(wù))試題及答案
- 中國古代傳統(tǒng)節(jié)日與民俗文化
- 高校申報新專業(yè)所需材料匯總
- (機構(gòu)動態(tài)仿真設(shè)計)adams
- NB-T 31053-2021 風(fēng)電機組電氣仿真模型驗證規(guī)程
- GB/T 1048-2019管道元件公稱壓力的定義和選用
- 文化創(chuàng)意產(chǎn)品設(shè)計及案例PPT完整全套教學(xué)課件
評論
0/150
提交評論