版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》專項測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,點E是△ABC內(nèi)一點,∠AEB=90°,D是邊AB的中點,延長線段DE交邊BC于點F,點F是邊BC的中點.若AB=6,EF=1,則線段AC的長為()A.7 B. C.8 D.92、下列條件中,能判定四邊形是正方形的是()A.對角線相等的平行四邊形 B.對角線互相平分且垂直的四邊形C.對角線互相垂直且相等的四邊形 D.對角線相等且互相垂直的平行四邊形3、如圖,菱形ABCD的邊長為6cm,∠BAD=60°,將該菱形沿AC方向平移2cm得到四邊形A′B′C′D′,A′D′交CD于點E,則點E到AC的距離為()A.1 B. C..2 D.24、四邊形四條邊長分別是a,b,c,d,其中a,b為對邊,且滿足,則這個四邊形是()A.任意四邊形 B.平行四邊形 C.對角線相等的四邊形 D.對角線垂直的四邊形5、勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,是數(shù)形結(jié)合的重要紐帶.數(shù)學(xué)家歐幾里得利用如圖驗證了勾股定理:以直角三角形ABC的三條邊為邊長向外作正方形ACHI,正方形ABED,正方形BCGF,連接BI,CD,過點C作CJ⊥DE于點J,交AB于點K.設(shè)正方形ACHI的面積為S1,正方形BCGF的面積為S2,長方形AKJD的面積為S3,長方形KJEB的面積為S4,下列結(jié)論:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正確的結(jié)論有()A.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在直角三角形ABC中,∠B=90°,點D是AC邊上的一點,連接BD,把△CBD沿著BD翻折,點C落在AB邊上的點E處,得到△EBD,連接CE交BD于點F,BG為△EBD的中線.若BC=4,△EBG的面積為3,則CD的長為____________2、如圖,O為坐標原點,△ABO的兩個頂點A(6,0),B(6,6),點D在邊AB上,點C在邊OA上,且BD=AC=1,點P為邊OB上的動點,則PC+PD的最小值為_____.3、在四邊形ABCD中,AB=BC=CD=DA=5cm,對角線AC,BD相交于點O,且AC=8cm,則四邊形ABCD的面積為______cm2.4、如圖,Rt△ABD中,∠D=90°,AB=8,BD=4,在BD延長線上取一點C,使得DC=BD,在直線AD左側(cè)有一動點P滿足∠PAD=∠PDB,連接PC,則線段CP長的最大值為________.5、在平行四邊形ABCD中,若∠A=130°,則∠B=______,∠C=______,∠D=______.三、解答題(5小題,每小題10分,共計50分)1、如圖,在矩形中,,,且四邊形是一個正方形,試問點F是的黃金分割點嗎?請說明理由.(補全解題過程)2、如圖,ABCD的對角線AC、BD相交于點O,BD12cm,AC6cm,點E在線段BO上從點B以1cm/s的速度向點O運動,點F在線段OD上從點O以2cm/s的速度向點D運動.
(1)若點E、F同時運動,設(shè)運動時間為t秒,當t為何值時,四邊形AECF是平行四邊形.(2)在(1)的條件下,當AB為何值時,AECF是菱形;(3)求(2)中菱形AECF的面積.3、我們知道正多邊形的定義是:各邊相等,各角也相等的多邊形叫做正多邊形.(1)如圖①,在各邊相等的四邊形ABCD中,當AC=BD時,四邊形ABCD正四邊形;(填“是”或“不是”)(2)如圖②,在各邊相等的五邊形ABCDE中,AC=CE=EB=BD=DA,求證:五邊形ABCDE是正五邊形;(3)如圖③,在各邊相等的五邊形ABCDE中,減少相等對角線的條數(shù)也能判定它是正五邊形,問:至少需要幾條對角線相等才能判定它是正五邊形?請說明理由.4、如圖,已知四邊形ABCD是正方形,點E是AD邊上的一點(不與點A,D重合),連接CE,以CE為一邊作正方形CEFG,使點F,G與點A,B在CE的兩側(cè),連接BE并延長,交GD延長線于點H.(1)如圖1,請判斷線段BE與GD的數(shù)量關(guān)系和位置關(guān)系,并說明理由;(2)如圖2,連接BG,若AB=2,CE=,請你直接寫出的值.5、在中,,斜邊,過點作,以AB為邊作菱形ABEF,若,求的面積.-參考答案-一、單選題1、C【解析】【分析】根據(jù)直角三角形的性質(zhì)求出DE,由EF=1,得到DF,再根據(jù)三角形中位線定理即可求出線段AC的長.【詳解】解:∵∠AEB=90,D是邊AB的中點,AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是邊AB的中點,點F是邊BC的中點,∴DF是ABC的中位線,∴AC=2DF=8.故選:C.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),三角形中位線定理,求出DF的長是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)正方形的判定定理進行判斷即可.【詳解】解:A、對角線相等的平行四邊形是矩形,不符合題意;B、對角線互相平分且垂直的四邊形是菱形,不符合題意;對角線相等且互相垂直的平行四邊形是正方形,故C選項不符合題意;D選項符合題意;故選:D.【點睛】本題考查了正方形的判定,熟知正方形的判定定理是解本題的關(guān)鍵.3、C【解析】【分析】根據(jù)題意連接BD,過點E作EF⊥AC于點F,根據(jù)菱形的性質(zhì)可以證明三角形ABD是等邊三角形,根據(jù)平移的性質(zhì)可得AD∥A′E,可得,,進而求出A′E,再利用30度角所對直角邊等于斜邊的一半即可得出結(jié)論.【詳解】解:如圖,連接BD,過點E作EF⊥AC于點F,∵四邊形ABCD是菱形,∴AD=AB,BD⊥AC,∵∠BAD=60°,∴三角形ABD是等邊三角形,∵菱形ABCD的邊長為6cm,∴AD=AB=BD=6cm,∴AG=GC=3(cm),∴AC=6(cm),∵AA′=2(cm),∴A′C=4(cm),∵AD∥A′E,∴,∴,∴A′E=4(cm),∵∠EA′F=∠DAC=∠DAB=30°,∴EF=A′E=2(cm).故選:C.【點睛】本題考查菱形的性質(zhì)以及等邊三角形的判定與性質(zhì)和平移的性質(zhì),解決本題的關(guān)鍵是掌握菱形的性質(zhì).4、B【解析】【分析】根據(jù)完全平方公式分解因式得到a=b,c=d,利用邊的位置關(guān)系得到該四邊形的形狀.【詳解】解:,,,,∴a=b,c=d,∵四邊形四條邊長分別是a,b,c,d,其中a,b為對邊,∴c、d是對邊,∴該四邊形是平行四邊形,故選:B.【點睛】此題考查了完全平方公式分解因式,平行四邊形的判定方法,熟練掌握完全平方公式分解因式是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)SAS證△ABI≌△ADC即可得證①正確,過點B作BM⊥IA,交IA的延長線于點M,根據(jù)邊的關(guān)系得出S△ABI=S1,即可得出②正確,過點C作CN⊥DA交DA的延長線于點N,證S1=S3即可得證③正確,利用勾股定理可得出S1+S2=S3+S4,即能判斷④不正確.【詳解】解:①∵四邊形ACHI和四邊形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正確;②過點B作BM⊥IA,交IA的延長線于點M,∴∠BMA=90°,∵四邊形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四邊形AMBC是矩形,∴BM=AC,∵S△ABI=AI?BM=AI?AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正確;③過點C作CN⊥DA交DA的延長線于點N,∴∠CNA=90°,∵四邊形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD?AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四邊形AKCN是矩形,∴CN=AK,∴S△ACD=AD?CN=AD?AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正確;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④錯誤;綜上,共有3個正確的結(jié)論,故選:C.【點睛】本題主要考查勾股定理,正方形的性質(zhì),矩形性質(zhì),全等三角形的判定和性質(zhì)等知識,熟練掌握勾股定理和全等三角形的判定和性質(zhì)是解題的關(guān)鍵.二、填空題1、【解析】【分析】由折疊的性質(zhì)可得,,,,由勾股定理可得,,根據(jù)題意可得,,求得的長度,即可求解.【詳解】解:由折疊的性質(zhì)可得,,,,∴為等腰直角三角形,為的中點,∴由勾股定理可得,∴∵BG為△EBD的中線,△EBG的面積為3∴,解得∴由勾股定理得:故答案為:【點睛】此題考查了折疊的性質(zhì),勾股定理以及直角三角形的性質(zhì),解題的關(guān)鍵是靈活利用相關(guān)性質(zhì)進行求解.2、6【解析】【分析】過點D作DE⊥AB交y軸于點E,交BO于點P,得矩形ACPD,正方形OCPE,此時PC+PD的值最?。驹斀狻拷猓骸逜(6,0),B(6,6),∴OA=AB=6,∴∠B=∠COP=45°,如圖,過點D作DE⊥AB交y軸于點E,交BO于點P,∴∠PDA=∠DAC=∠PCA=90°,∴四邊形ACPD是矩形,∴AC=DP,PC=AD,同理可得四邊形OCPE是矩形,∵∠COP=45°,∴PC=OC,∴四邊形OCPE是正方形,∵BD=AC=1,∴DP=BD=1,∴PC=AD=5,∴PC+PD=6,此時PC+PD的值最小,為6.故答案為:6.【點睛】本題考查了矩形的判定與性質(zhì),正方形的判定以及垂線段最短問題.3、24【解析】【分析】根據(jù)題意作圖,得出四邊形為菱形,再根據(jù)菱形的性質(zhì)進行求解面積即可.【詳解】解:根據(jù)題意作圖如下:由題意得四邊形為菱形,,且平分,,,由勾股定理:,,,故答案為:24.【點睛】本題考查了菱形的判定及形,勾股定理,解題的關(guān)鍵是判斷四邊形是菱形.4、##【解析】【分析】如圖,取AD的中點O,連接OP、OC,然后求出OP、OC的長,最后根據(jù)三角形的三邊關(guān)系即可解答.【詳解】解:如圖,取AD的中點O,連接OP、OC∵∠PAD=∠PDB,∠PDB+∠ADP=90°,∴∠PAD+∠ADP=90°,即∠APD=90°,∵AO=OD,∴PO=OA=AD,∴∴OP=,∵BD=CD=4,OD=,∴∵PC≤OP+OC,∴PC≤,∴PC的最大值為.故填:.【點睛】本題主要考查了直角三角形斜邊中線的性質(zhì)、勾股定理等知識點,解題的關(guān)鍵在于正確添加常用輔助線,進而求得OP、OC的長.5、【解析】【分析】利用平行四邊形的性質(zhì):鄰角互補,對角相等,即可求得答案.【詳解】解:在平行四邊形ABCD中,、是的鄰角,是的對角,,,故答案為:,,.【點睛】本題主要是考查了平行四邊形的性質(zhì):對角相等,鄰角互補,熟練掌握平行四邊形的性質(zhì),求解決本題的關(guān)鍵.三、解答題1、是,理由見解析【分析】根據(jù)已知得出只需求得其BF與BC的比是否符合黃金比即可.【詳解】解:點F是BC的黃金分割點.理由如下:∵四邊形是一個正方形,∴.又∵在矩形中,BC=AD=2,∴.∴點F是BC的黃金分割點.【點睛】此題主要考查了黃金分割點,根據(jù)已知條件和正方形的性質(zhì)進行分析求解是解題關(guān)鍵.2、(1)t=2s;(2)AB=;(3)24【分析】(1)若是平行四邊形,所以BD=12cm,則BO=DO=6cm,故有6-t=2t,即可求得t值;
(2)若是菱形,則AC垂直于BD,即有,故AB可求;
(3)根據(jù)四邊形AECF是菱形,求得,根據(jù)平行四邊形的性質(zhì)得到BO=OD,求得BE=DF,列方程到底BE=DF=2,求得EF=8,于是得到結(jié)論.【詳解】解:(1)∵四邊形ABCD為平行四邊形,∴AO=OC,EO=OF,∵BO=OD=6cm,∴,∴,∴,∴當t為2秒時,四邊形AECF是平行四邊形;(2)若四邊形AECF是菱形,則,,;∴當AB為時,平行四邊形是菱形;(3)由(1)(2)可知當t=2s,AB=時,四邊形AECF是菱形,∴EO=6?t=4,∴EF=8,∴菱形AECF的面積=.【點睛】本題考查了平行四邊形的判定和性質(zhì)和菱形的判定和性質(zhì),勾股定理,菱形的面積的計算.3、(1)是;(2)見解析;(3)至少需要3條對角線相等才能判定它是正五邊形,見解析【分析】(1)根據(jù)對角線相等的菱形是正方形,證明即可;(2)由SSS證明△ABC≌△BCD≌△CDE≌△DEA≌△EAB得出∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,即可得出結(jié)論;(3)由SSS證明△ABE≌△BCA≌△DEC得出∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,由SSS證明△ACE≌△BEC得出∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,由四邊形ABCE內(nèi)角和為360°得出∠ABC+∠ECB=180°,證出AB∥CE,由平行線的性質(zhì)得出∠ABE=∠BEC,∠BAC=∠ACE,證出∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,即可得出結(jié)論;【詳解】(1)解:結(jié)論:四邊形ABCD是正四邊形.理由:∵AB=BC=CD=DA,∴四邊形ABCD是菱形,∵AC=BD,∴四邊形ABCD是正方形.∴四邊形ABCD是正四邊形.故答案為:是.(2)證明:∵凸五邊形ABCDE的各條邊都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、△EAB中,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五邊形ABCDE是正五邊形;(3)解:結(jié)論:至少需要3條對角線相等才能判定它是正五邊形.若AC=BE=CE,五邊形ABCDE是正五邊形,理由如下:在△ABE、△BCA和△DEC中,,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,在△ACE和△BEC中,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,∵四邊形ABCE內(nèi)角和為360°,∴∠ABC+∠ECB=180°,∴AB∥CE,∴∠ABE=∠BEC,∠BAC=∠ACE,∴∠CAE=∠CEA=2∠ABE,∴∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,∴五邊形ABCDE是正五邊形;【點睛】本題是四邊形綜合題目,考查了正多邊形的判定、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、三角形內(nèi)角和定理等知識;本題綜合性強,有一定難度,證明三角形全等是解題的關(guān)鍵.4、(1)BE=DG,BE⊥DG,理由見解析;(2).【分析】(1)由“SAS”證得△GCD≌△ECB;再由全等三角形的性質(zhì)和平行線的性質(zhì)可得∠EBC=∠HED=∠GDC,由余角的性質(zhì)可得答案;(2)連接BD,EG,由①知∠BHD=∠EHG=90°,根據(jù)勾股定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 染色師成果轉(zhuǎn)化模擬考核試卷含答案
- 道岔鉗工安全操作競賽考核試卷含答案
- 腳輪制作工安全風(fēng)險水平考核試卷含答案
- 醬鹵肉制品加工工操作管理評優(yōu)考核試卷含答案
- 纖維調(diào)施膠干燥工安全培訓(xùn)模擬考核試卷含答案
- 2025年鍍鉻板(卷)合作協(xié)議書
- 中國垃圾填埋場治理行業(yè)市場前景預(yù)測及投資價值評估分析報告
- 信息安全與加密教學(xué)課件
- 2025年青海省西寧市中考生物真題卷含答案解析
- 財務(wù)經(jīng)理工作總結(jié)及下年度工作計劃
- 大數(shù)據(jù)安全技術(shù)與管理
- 2026年中小學(xué)校長校園安全管理培訓(xùn)考試題及答案
- 2025年山東建筑大學(xué)思想道德修養(yǎng)與法律基礎(chǔ)期末考試模擬題必考題
- 江西省贛州地區(qū)2023-2024學(xué)年七年級上學(xué)期期末英語試(含答案)
- 2025年香港滬江維多利亞筆試及答案
- 述職報告中醫(yī)
- 患者身份識別管理標準
- 松下Feeder維護保養(yǎng)教材
- 汽車融資貸款合同范本
- 碼頭租賃意向協(xié)議書
- 2025租房合同范本下載(可直接打?。?/a>
評論
0/150
提交評論