版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》同步測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,已知,,,則的長(zhǎng)為(
)A.7 B.3.5 C.3 D.22、如圖為了測(cè)量B點(diǎn)到河對(duì)面的目標(biāo)A之間的距離,在B點(diǎn)同側(cè)選擇了一點(diǎn)C,測(cè)得∠ABC=65°,∠ACB=35°,然后在M處立了標(biāo)桿,使∠MBC=65°,∠MCB=35°,得到△MBC≌△ABC,所以測(cè)得MB的長(zhǎng)就是A,B兩點(diǎn)間的距離,這里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA3、小明不慎將一塊三角形的玻璃摔碎成如圖所示的四塊(即圖中標(biāo)有1、2、3、4的四塊),你認(rèn)為將其中的哪一些塊帶去,就能配一塊與原來(lái)一樣大小的三角形?應(yīng)該帶(
)A.第1塊 B.第2塊 C.第3塊 D.第4塊4、如圖,在和中,,,,則(
)A.30° B.40° C.50° D.60°5、如圖所示,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點(diǎn),且∠DAE=45°,將△ADC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)90°后得到△AFB,連接EF,有下列結(jié)論:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正確的有()A.①②③④ B.②③ C.②③④ D.③④第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,平分,.填空:因?yàn)槠椒郑訽_______.從而________.因此________.2、如圖,中,以點(diǎn)O為圓心,任意長(zhǎng)為半徑作弧,交于點(diǎn)M,交于點(diǎn)N,分別以點(diǎn)M,N為圓心,以大于的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)C,作射線,過(guò)點(diǎn)C作于點(diǎn)D.交于點(diǎn)E,若,則的度數(shù)為_______________.3、如圖,在平面直角坐標(biāo)系中,將沿軸向右平移后得到,點(diǎn)A的坐標(biāo)為,點(diǎn)A的對(duì)應(yīng)點(diǎn)在直線上,點(diǎn)在的角平分線上,若四邊形的面積為4,則點(diǎn)的坐標(biāo)為________.4、如圖,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE,垂足分別為E,D,AD=25,DE=17,則BE=_____.5、如圖,MN∥PQ,AB⊥PQ,點(diǎn)A,D,B,C分別在直線MN和PQ上,點(diǎn)E在AB上,AD+BC=7,AD=EB,DE=EC,則AB=_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,若△OAD≌△OBC,且∠O=65°,∠BEA=135°,求∠C的度數(shù).2、【閱讀理解】課外興趣小組活動(dòng)時(shí),老師提出了如下問(wèn)題:如圖,△ABC中,若AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過(guò)合作交流,得到了如下的解決方法:如圖,延長(zhǎng)AD到點(diǎn)E,使DE=AD,連結(jié)BE.請(qǐng)根據(jù)小明的方法思考:(1)由已知和作圖能得到的理由是(
).A.SSS
B.SAS
C.AAS
D.ASA(2)AD的取值范圍是(
).A.
B.
C.
D.(3)【感悟】解題時(shí),條件中若出現(xiàn)“中點(diǎn)”、“中線”字樣,可以考慮延長(zhǎng)中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論轉(zhuǎn)化到同一個(gè)三角形中.【問(wèn)題解決】如圖,AD是△ABC的中線,BE交AC于點(diǎn)E,交AD于F,且AE=EF.求證:AC=BF.3、如圖,已知中,,是內(nèi)一點(diǎn),且,試說(shuō)明的理由.4、中,,,過(guò)點(diǎn)作,連接,,為平面內(nèi)一動(dòng)點(diǎn).(1)如圖1,點(diǎn)在上,連接,,過(guò)點(diǎn)作于點(diǎn),為中點(diǎn),連接并延長(zhǎng),交于點(diǎn).①若,,則;②求證:.(2)如圖2,連接,,過(guò)點(diǎn)作于點(diǎn),且滿足,連接,,過(guò)點(diǎn)作于點(diǎn),若,,,請(qǐng)求出線段的取值范圍.5、如圖,在四邊形中,,,分別是,上的點(diǎn),連接,,.(1)如圖①,,,.求證:;
(2)如圖②,,當(dāng)周長(zhǎng)最小時(shí),求的度數(shù);(3)如圖③,若四邊形為正方形,點(diǎn)、分別在邊、上,且,若,,請(qǐng)求出線段的長(zhǎng)度.-參考答案-一、單選題1、C【解析】【分析】利用全等三角形的性質(zhì)求解即可.【詳解】解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故選C.【考點(diǎn)】本題主要考查了全等三角形的性質(zhì),熟知全等三角形對(duì)應(yīng)邊相等是解題的關(guān)鍵.2、D【解析】【分析】利用全等三角形的判定方法進(jìn)行分析即可.【詳解】解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故選:D.【考點(diǎn)】本題考查了全等三角形的應(yīng)用,熟練掌握三角形全等的判定定理是解題的關(guān)鍵.3、B【解析】【分析】本題應(yīng)先假定選擇哪塊,再對(duì)應(yīng)三角形全等判定的條件進(jìn)行驗(yàn)證.【詳解】解:1、3、4塊玻璃不同時(shí)具備包括一完整邊在內(nèi)的三個(gè)證明全等的要素,所以不能帶它們?nèi)?,只有?塊有完整的兩角及夾邊,符合ASA,滿足題目要求的條件,是符合題意的.故選:B.【考點(diǎn)】本題主要考查三角形全等的判定,看這4塊玻璃中哪個(gè)包含的條件符合某個(gè)判定.判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.4、D【解析】【分析】由題意可證,有,由三角形內(nèi)角和定理得,計(jì)算求解即可.【詳解】解:∵∴△ABC和△ADC均為直角三角形在和中∵∴∴∵∴故選D.【考點(diǎn)】本題考查了三角形全等,三角形的內(nèi)角和定理.解題的關(guān)鍵在于找出角度的數(shù)量關(guān)系.5、C【解析】【分析】利用旋轉(zhuǎn)性質(zhì)可得△ABF≌△ACD,根據(jù)全等三角形的性質(zhì)一一判斷即可.【詳解】解:∵△ADC繞A順時(shí)針旋轉(zhuǎn)90°后得到△AFB,∴△ABF≌△ACD,∴∠BAF=∠CAD,AF=AD,BF=CD,故②④正確,∴∠EAF=∠BAF+∠BAE=∠CAD+∠BAE=∠BAC﹣∠DAE=90°﹣45°=45°=∠DAE故③正確無(wú)法判斷BE=CD,故①錯(cuò)誤,故選:C.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等,解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.二、填空題1、
【解析】【分析】由AC平分∠DAB,∠1=∠2,可得出∠CAB=∠2,由內(nèi)錯(cuò)角相等可以得出兩直線平行.【詳解】解:∵AC平分∠DAB,∴∠1=∠CAB.又∵∠1=∠2,∴∠CAB=∠2,∴ABDC(內(nèi)錯(cuò)角相等,兩直線平行).故答案為:∠CAB,∠CAB,DC.【考點(diǎn)】本題考查了平行線的判定定理以及角平分線的定義,解題的關(guān)鍵是找出∠CAB=∠2.解決該類題型只需牢牢掌握平行線的判定定理即可.2、65°或65度【解析】【分析】根據(jù)作圖先得出OC平分∠AOB,根據(jù),得出,根據(jù)為的外角,得出,即可求出,根據(jù),得出,即可求解.【詳解】解:根據(jù)作圖可知,OC平分∠AOB,∴,∵,,,為的外角,,,,,.故答案為:.【考點(diǎn)】本題主要考查了角平分線的基本作圖,平行線的性質(zhì),三角形外角的性質(zhì),直角三角形的性質(zhì),根據(jù)題意求出是解題的關(guān)鍵.3、【解析】【分析】先求出點(diǎn)坐標(biāo),由此可知平移的距離,根據(jù)四邊形的面積為4,可求出點(diǎn)坐標(biāo)和平移的方向、距離,則可求B′點(diǎn)坐標(biāo).【詳解】解:∵沿軸向右平移后得到,∴點(diǎn)與點(diǎn)是縱坐標(biāo)相同,是4,把代入中,得到,∴點(diǎn)坐標(biāo)為(4,4),∴點(diǎn)是沿軸向右平移4個(gè)單位,過(guò)點(diǎn)作,,∵點(diǎn)在的角平分線上,且,四邊形的面積為4,∴∴∴∴點(diǎn)坐標(biāo)為(1,3),根據(jù)平移的性質(zhì)可知點(diǎn)B也是向右平移4個(gè)單位得到.∵點(diǎn)(1,3),∴B′(5,3).故答案為:(5,3).【考點(diǎn)】本題主要考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、平移性質(zhì),通過(guò)求平移后的坐標(biāo)得到平移的距離是解決本題的的關(guān)鍵.4、8【解析】【分析】可先證明△BCE≌△CAD,可求得CE=AD,結(jié)合條件可求得CD,則可求得BE.【詳解】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,又∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠BCE+∠CBE=90°,∴∠CBE=∠ACD,在△CBE和△ACD中,,∴△CBE≌△ACD(AAS),∴BE=CD,CE=AD=25,∵DE=17,∴CD=CE﹣DE=AD﹣DE=25﹣17=8,∴BE=CD=8;故答案為:8.【考點(diǎn)】本題主要考查全等三角形的判定和性質(zhì);證明三角形全等得出對(duì)應(yīng)邊相等是解決問(wèn)題的關(guān)鍵.5、7【解析】【詳解】由MN∥PQ,AB⊥PQ,可知∠DAE=∠EBC=90°,可判定△ADE≌△BCE,從而得出AE=BC,則AB=AE+BE=AD+BC=7.故答案為:7.點(diǎn)睛:本題考查了直角三角形全等的判定和性質(zhì)以及平行線的性質(zhì),是基礎(chǔ)知識(shí),比較簡(jiǎn)單.三、解答題1、35o【解析】【分析】根據(jù)全等三角形對(duì)應(yīng)角相等可得∠C=∠D,∠OBC=∠OAD,再根據(jù)三角形的內(nèi)角和等于180°表示出∠OBC,然后利用四邊形的內(nèi)角和等于360°列方程求解即可.【詳解】∴∠C=∠D,∠OBC=∠OAD,∵∠O=65o,∴∠OBC=180o?65o?∠C=115o?∠C,在四邊形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360o,∴65o+115o?∠C+135o+115o?∠C=360o,解得∠C=35o.【考點(diǎn)】此題考查了全等三角形的性質(zhì)和四邊形的內(nèi)角和等于360°,熟練掌握這兩個(gè)性質(zhì)是解題的關(guān)鍵.2、(1)B(2)C(3)見(jiàn)解析【解析】【分析】(1)根據(jù)AD=DE,∠ADC=∠BDE,BD=DC推出△ADC和△EDB全等即可;(2)根據(jù)全等得出BE=AC=6,AE=2AD,由三角形三邊關(guān)系定理得出8-6<2AD<8+6,求出即可;(3)延長(zhǎng)AD到M,使AD=DM,連接BM,根據(jù)SAS證△ADC≌△MDB,推出BM=AC,∠CAD=∠M,根據(jù)AE=EF,推出∠CAD=∠AFE=∠BFD,求出∠BFD=∠M,根據(jù)等腰三角形的性質(zhì)求出即可.(1)∵在△ADC和△EDB中,∴△ADC≌△EDB(SAS),故選B;(2)∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三邊關(guān)系定理得:8-6<2AD<8+6,∴1<AD<7,故選:C.(3)延長(zhǎng)AD到點(diǎn)M,使AD=DM,連接BM.∵AD是△ABC中線∴CD=BD∵在△ADC和△MDB中∴∴BM=AC(全等三角形的對(duì)應(yīng)邊相等)∠CAD=∠M(全等三角形的對(duì)應(yīng)角相等)∵AE=EF,∴∠CAD=∠AFE(等邊對(duì)等角)∵∠AFE=∠BFD,∴∠BFD=∠M,∴BF=BM(等角對(duì)等邊)又∵BM=AC,∴AC=BF.【考點(diǎn)】本題考查了三角形的中線,三角形的三邊關(guān)系定理,等腰三角形性質(zhì)和判定,全等三角形的性質(zhì)和判定等知識(shí)點(diǎn),主要考查學(xué)生運(yùn)用定理進(jìn)行推理的能力.3、詳見(jiàn)解析【解析】【分析】先證明,再利用全等三角形的性質(zhì)得到,然后利用等腰三角形三線合一的性質(zhì),即可證明.【詳解】證明:在與中,∴∴(全等三角形的對(duì)應(yīng)角相等)∵(已知)∴(等腰三角形的三線合一)【考點(diǎn)】本題考查全等三角形的判定和性質(zhì)、等腰三角形的性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題和等腰三角形三線合一性質(zhì)的運(yùn)用.4、(1)①
4,②見(jiàn)解析;(2)6≤≤12【解析】【分析】(1)①根據(jù)三角形的面積公式計(jì)算即可;②先根據(jù)AAS證得△ABF≌△BCM,得出BF=MC,AF=BM,再利用AAS證得△AFD≌△CHD,得出AF=CH,即可得出結(jié)論;(2)連接CM,先利用SAS得出△≌△CBM,得出,再根據(jù)等底同高的三角形的面積相等得出,再利用三角形的面積公式得出EC的長(zhǎng),從而利用三角形的三邊關(guān)系得出的取值范圍;【詳解】解:(1)①∵,,,∴,②∵,,∴∠AFB=∠BMC=∠FMC=90°,∴∠ABF+∠BAF=90°,∵,∴∠ABF+∠CBM=90°,∴∠BAF=∠CBM,∵,∴△ABF≌△BCM,∴BF=MC,AF=BM,∵∠AFB=∠FMC=90°,∴AF//CM,∴∠FAC=∠HCD,∵為中點(diǎn),∴AD=CD,∵∠FDA=∠HDC,∴△AFD≌△CHD,∴AF=CH,∴BM=CH,∵BF=CM∴BF-BM=CM-CH∴.(2)連接CM,∵,,∴∠ABC=∠=90°,∴∠BA=∠CBM,∵,,∴△≌△CBM,∴,∵,,∴∠ABC+∠BAE=180°,∴AE//BC,∴,∵,,∴,∴EC=9在△ECM中,,則9-3≤CM≤9+3,∴6≤CM≤12,∴6≤≤12,【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì)以及三角形的三邊關(guān)系,靈活運(yùn)用全等三角形的判定是解題的關(guān)鍵.5、(1)見(jiàn)解析;(2);(3).【解析】【分析】(1)延長(zhǎng)到點(diǎn)G,使,連接,首先證明,則有,,然后利用角度之間的關(guān)系得出,進(jìn)而可證明,則,則結(jié)論可證;(2)分別作點(diǎn)A關(guān)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年江蘇省鎮(zhèn)江市中考語(yǔ)文真題卷含答案解析
- 幼兒園保育工作計(jì)劃總結(jié)
- 2025年楚雄市高壓電工證理論考試練習(xí)題含答案
- 安環(huán)部員工2025年度工作總結(jié)模版
- 小學(xué)六年級(jí)語(yǔ)文教師教學(xué)工作總結(jié)
- 腳手架工程量計(jì)算方法
- 2025年市場(chǎng)監(jiān)督管理局業(yè)務(wù)考試復(fù)習(xí)題集及答案解析
- 花卉栽培試題庫(kù)及答案
- 2025年社區(qū)公共衛(wèi)生服務(wù)培訓(xùn)試題集含答案
- 電工三級(jí)(高級(jí)工)試題含答案
- 2025年大學(xué)大一(法學(xué))法理學(xué)試題及答案
- 膽囊癌課件教學(xué)課件
- 廣西2025年高等職業(yè)教育考試全區(qū)模擬測(cè)試 能源動(dòng)力與材料 大類試題及逐題答案解說(shuō)
- 2026江蘇省公務(wù)員考試公安機(jī)關(guān)公務(wù)員(人民警察)歷年真題匯編附答案解析
- 孕婦貧血教學(xué)課件
- 超市冷庫(kù)應(yīng)急預(yù)案(3篇)
- 5年(2021-2025)山東高考生物真題分類匯編:專題17 基因工程(解析版)
- 2025年10月自考00610高級(jí)日語(yǔ)(二)試題及答案
- 新華資產(chǎn)招聘筆試題庫(kù)2025
- 2025年中國(guó)潛孔鉆機(jī)行業(yè)細(xì)分市場(chǎng)研究及重點(diǎn)企業(yè)深度調(diào)查分析報(bào)告
- 食品經(jīng)營(yíng)場(chǎng)所及設(shè)施設(shè)備清洗消毒和維修保養(yǎng)制度
評(píng)論
0/150
提交評(píng)論