考點解析-江蘇省宜興市中考數(shù)學真題分類(平行線的證明)匯編難點解析試卷(詳解版)_第1頁
考點解析-江蘇省宜興市中考數(shù)學真題分類(平行線的證明)匯編難點解析試卷(詳解版)_第2頁
考點解析-江蘇省宜興市中考數(shù)學真題分類(平行線的證明)匯編難點解析試卷(詳解版)_第3頁
考點解析-江蘇省宜興市中考數(shù)學真題分類(平行線的證明)匯編難點解析試卷(詳解版)_第4頁
考點解析-江蘇省宜興市中考數(shù)學真題分類(平行線的證明)匯編難點解析試卷(詳解版)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省宜興市中考數(shù)學真題分類(平行線的證明)匯編難點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、將一副三角板()按如圖所示方式擺放,使得,則等于()A. B. C. D.2、如圖,不能判定AB∥CD的是(

)A.∠B=∠DCE B.∠A=∠ACDC.∠B+∠BCD=180° D.∠A=∠DCE3、如圖,在ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一點,將ACD沿CD翻折后得到CED,邊CE交AB于點F.若DEF中有兩個角相等,則∠ACD的度數(shù)為(

)A.15°或20° B.20°或30° C.15°或30° D.15°或25°4、如圖,直線,等邊三角形的頂點、分別在直線和上,邊與直線所夾的銳角為,則的度數(shù)為(

)A. B. C. D.5、如圖,∠B=∠C,則∠ADC與∠AEB的大小關系是(

)A.∠ADC>∠AEB B.∠ADC<∠AEBC.∠ADC=∠AEB D.大小關系不確定6、如圖,,的角平分線交于點,若,,則的度數(shù)(

)A. B. C. D.7、如圖,將沿著平行于的直線折疊,點落在點處,若,則的度數(shù)是(

)A.108° B.104° C.96° D.92°8、將一副三角板按如圖所示的方式放置,,,,且點在上,點在上,AC∥EF,則的度數(shù)為(

)A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖所示,直線,直線c與直線a,b分別相交于點A、點B,AM⊥b,垂足為點M,若∠1=56°,則∠2=______.2、如圖,將三角尺和三角尺(其中)擺放在一起,使得點在同一條直線上,交于點,那么度數(shù)等于_____.3、如圖,點O是△ABC的三條角平分線的交點,連結AO并延長交BC于點D,BM、CM分別平分∠ABC和∠ACB的外角,直線MC和直線BO交于點N,OH⊥BC于點H,有下列結論:①∠BOC+∠BMC=180°;②∠N=∠DOH;③∠BOD=∠COH;④若∠CBA=∠CAB,則MN∥AB;其中正確的有_____.(填序號)4、如圖,把兩塊大小相同的含45°的三角板ACF和三角板CFB如圖所示擺放,點D在邊AC上,點E在邊BC上,且∠CFE=13°,∠CFD=32°,則∠DEC的度數(shù)為_______.5、如圖,,的平分線相交于點,的平分線相交于點,,的平分線相交于點……以此類推,則的度數(shù)是___________(用含與的代數(shù)式表示).6、如圖,將三角形紙片ABC按如圖方式折疊:折痕分別為DC和DE,點A與BC邊上的點G重合,點B與DG延長線上的點F重合.若滿足∠ACB=40°,則∠CEF=_______度.7、如圖,在△ABC中,AD平分∠BAC,如果∠B=80°,∠C=40°,那么∠ADC的度數(shù)等于_____.三、解答題(7小題,每小題10分,共計70分)1、用反證法證明:一個三角形中不能有兩個角是直角.2、如圖,AB∥CD,點E是CD上一點,∠AEC=42°,EF平分∠AED交AB于點F,求∠AFE的度數(shù).3、已知://.求證://.4、如圖,以直角△AOC的直角頂點O為原點,以OC,OA所在直線為x軸和y軸建立平面直角坐標系,點A(0,a),C(b,0)滿足.(1)點A的坐標為________;點C的坐標為________.(2)已知坐標軸上有兩動點P,Q同時出發(fā),P點從C點出發(fā)沿x軸負方向以每秒2個單位長度的速度勻速移動,Q點從O點出發(fā)沿y軸正方向以每秒1個單位長度的速度勻速移動,點P到達O點整個運動隨之結束.AC的中點D的坐標是(4,3),設運動時間為t秒.問:是否存在這樣的t,使得△ODP與△ODQ的面積相等?若存在,請求出t的值;若不存在,請說明理由.(3)在(2)的條件下,若∠DOC=∠DCO,點G是第二象限中一點,并且y軸平分∠GOD.點E是線段OA上一動點,連接接CE交OD于點H,當點E在線段OA上運動的過程中,探究∠GOA,∠OHC,∠ACE之間的數(shù)量關系,并證明你的結論(三角形的內角和為180°可以直接使用).5、問題情景:如圖1,在同一平面內,點和點分別位于一塊直角三角板的兩條直角邊,上,點與點在直線的同側,若點在內部,試問,與的大小是否滿足某種確定的數(shù)量關系?(1)特殊探究:若,則_________度,________度,_________度;(2)類比探索:請猜想與的關系,并說明理由;(3)類比延伸:改變點的位置,使點在外,其它條件都不變,判斷(2)中的結論是否仍然成立?若成立,請說明理由;若不成立,請直接寫出,與滿足的數(shù)量關系式.6、【教材呈現(xiàn)】如圖是華師版七年級下冊數(shù)學教材第76頁的部分內容.請根據(jù)教材提示,結合圖①,將證明過程補充完整.【結論應用】(1)如圖②,在△中,∠=60°,平分∠,平分∠,求∠的度數(shù).(2)如圖③,將△的∠折疊,使點落在△外的點處,折痕為.若∠=,∠=,∠=,則、、滿足的等量關系為(用、、的代數(shù)式表示).7、在四邊形ABCD中,,.(1)如圖①,若,求出的度數(shù);(2)如圖②,若的角平分線交AB于點E,且,求出的度數(shù);(3)如圖③,若和的角平分線交于點E,求出的度數(shù).-參考答案-一、單選題1、A【解析】【分析】根據(jù)平行線的性質和三角形外角的性質進行計算,即可得到答案.【詳解】解:,.,.故選.【考點】本題考查平行線的性質和三角形外角的性質,解題的關鍵是掌握平行線的性質和三角形外角的性質.2、D【解析】【分析】利用平行線的判定方法一一判斷即可.【詳解】解:由∠B=∠DCE,根據(jù)同位角相等兩直線平行,即可判斷AB∥CD.由∠A=∠ACD,根據(jù)內錯角相等兩直線平行,即可判斷AB∥CD.由∠B+∠BCD=180°,根據(jù)同旁內角互補兩直線平行,即可判斷AB∥CD.故A,B,C不符合題意,故選:D.【考點】本題考查平行線的判定,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.3、C【解析】【分析】由三角形的內角和定理可求解∠A=40°,設∠ACD=x°,則∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折疊可知:∠ADC=∠CDE,∠E=∠A=40°,可分三種情況:當∠DFE=∠E=40°時;當∠FDE=∠E=40°時;當∠DFE=∠FDE時,根據(jù)∠ADC=∠CDE列方程,解方程可求解x值,即可求解.【詳解】解:在△ABC中,∠ACB=90°,∴∠B+∠A=90°,∵∠B-∠A=10°,∴∠A=40°,∠B=50°,設∠ACD=x°,則∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折疊可知:∠ADC=∠CDE,∠E=∠A=40°,當∠DFE=∠E=40°時,∵∠FDE+∠DFE+∠E=180°,∴∠FDE=180°-40°-40°=100°,∴140°-x=100°+40°+x,解得x=0(不存在);當∠FDE=∠E=40°時,∴140°-x=40°+40°+x,解得x=30°,即∠ACD=30°;當∠DFE=∠FDE時,∵∠FDE+∠DFE+∠E=180°,∴∠FDE==70°,∴140°-x=70°+40°+x,解得x=15,即∠ACD=15°,綜上,∠ACD=15°或30°,故選:C.【考點】本題主要考查直角三角形的性質,等腰三角形的性質,三角形的內角和定理,根據(jù)∠ADC=∠CDE分三種情況列方程是解題的關鍵.4、C【解析】【分析】根據(jù),可以得到,,再根據(jù)等邊三角形可以計算出的度數(shù).【詳解】解:如圖所示:根據(jù)∴,又∵是等邊三角形∴∴∴故選:C.【考點】本題主要考查了平行線的性質,即兩直線平行內錯角相等以及兩直線平行同位角相等;明確平行線的性質是解題的關鍵.5、C【解析】【分析】首先在△ADC中有內角和為180°,即∠A+∠C+∠ADC=180°,在△AEB中有內角和為180°,即∠AEB+∠A+∠B=180°,又知∠B=∠C,故可得∠AEB=∠ADC.【詳解】在△ADC中有∠A+∠C+∠ADC=180°,在△AEB有∠AEB+∠A+∠B=180°,∵∠B=∠C,∴∠ADC=∠AEB.故選C.【考點】本題主要考查三角形內角和定理的應用,利用了三角形內角和為180度,此題難度不大.6、A【解析】【分析】法一:延長PC交BD于E,設AC、PB交于F,根據(jù)三角形的內角和定理得到∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°推出∠P+∠PCF=∠A+∠ABF,根據(jù)三角形的外角性質得到∠P+∠PBE=∠PED,推出∠P+∠PBE=∠PCD?∠D,根據(jù)PB、PC是角平分線得到∠PCF=∠PCD,∠ABF=∠PBE,推出2∠P=∠A?∠D,代入即可求出∠P.法二:延長DC,與AB交于點E.設AC與BP相交于O,則∠AOB=∠POC,可得∠P+∠ACD=∠A+∠ABD,代入計算即可.【詳解】解:法一:延長PC交BD于E,設AC、PB交于F,∵∠A+∠ABF+∠AFB=∠P+∠PCF+∠PFC=180°,∵∠AFB=∠PFC,∴∠P+∠PCF=∠A+∠ABF,∵∠P+∠PBE=∠PED,∠PED=∠PCD?∠D,∴∠P+∠PBE=∠PCD?∠D,∴2∠P+∠PCF+∠PBE=∠A?∠D+∠ABF+∠PCD,∵PB、PC是角平分線∴∠PCF=∠PCD,∠ABF=∠PBE,∴2∠P=∠A?∠D∵∠A=48°,∠D=10°,∴∠P=19°.法二:延長DC,與AB交于點E.∵∠ACD是△ACE的外角,∠A=48°,∴∠ACD=∠A+∠AEC=48°+∠AEC.∵∠AEC是△BDE的外角,∴∠AEC=∠ABD+∠D=∠ABD+10°,∴∠ACD=48°+∠AEC=48°+∠ABD+10°,整理得∠ACD?∠ABD=58°.設AC與BP相交于O,則∠AOB=∠POC,∴∠P+∠ACD=∠A+∠ABD,即∠P=48°?(∠ACD?∠ABD)=19°.故選A.【考點】本題主要考查對三角形的內角和定理,三角形的外角性質,對頂角的性質,角平分線的性質等知識點的理解和掌握,能熟練地運用這些性質進行計算是解此題的關鍵.7、D【解析】【分析】根據(jù)兩直線平行,同位角相等可得∠ADE=∠B,再根據(jù)翻折變換的性質可得∠A′DE=∠ADE,然后根據(jù)平角等于180°列式計算即可得解.【詳解】解:∵,∴∠ADE=∠B=44°,∵△ABC沿著平行于BC的直線折疊,點A落到點A′,∴∠A′DE=∠ADE=44°,∴∠A′DB=180°﹣44°﹣44°=92°.故選:D.【考點】本題考查了平行線的性質,翻折變換的性質,三角形的內角和定理,熟記性質并準確識圖理清圖中各角度之間的關系是解題的關鍵.8、C【解析】【分析】根據(jù)平行線的性質和三角形的內角和定理即可得到結論.【詳解】∵AC∥EF,∴∠DBE=∠C=45°,∴∠FBD=135°,∵∠E=60°,∠EDF=90°,∴∠F=30°,∴∠FDC=∠F+∠FBD=30°+135°=165°,故選:C.【考點】本題考查了三角形的內角和定理,平行線的性質,正確的識別圖形是解題的關鍵.二、填空題1、34°##34度【解析】【分析】先根據(jù)平行線的性質得出∠ABM的度數(shù),再由三角形內角和定理求出∠2的度數(shù)即可.【詳解】:解:∵直線,∠1=56°,∴∠ABM=∠1=56°,∵AM⊥b,垂足為點M,∴∠AMB=90°,∴∠2=180°?∠AMB?∠ABM=180°?56°?90°=34°,故答案為:34°.【考點】本題考查三角形中求角度問題,涉及到平行線的性質、三角形內角和定理,在求角度問題中,熟練運用三角形內角和是180°是解決問題的關鍵.2、105°【解析】【分析】利用直角三角形的兩個銳角互余求得∠ABC與∠FDE的度數(shù),然后在△MDB中,利用三角形內角和定理求得∠DMB,再依據(jù)對頂角相等即可求解.【詳解】解:∵∠ABC=90°?∠C=90°?60°=30°,∠FDE=90°?∠F=90°?45°=45°,∴∠DMB=180°?∠ABC?∠FDE=180°?30°?45°=105°,∴∠CMF=∠DMB=105°.故答案為:105°.【考點】本題考查了直角三角形兩銳角互余、三角形的內角和定理以及對頂角的性質,正確求得∠DMB的度數(shù)是關鍵.3、①③④【解析】【分析】由平分可知:①∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,即∠OBM=90°,∠OCM=90°,可知∠BOC+∠BMC=180°;②利用外角定理,角平分線性質進行計算分析即可;③根據(jù)∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,可知∠BOD=∠COH;④若∠CBA=∠CAB,則∠1=∠2=∠BAC,由于∠N=∠BAC,可知∠1=∠N,即MN∥AB.【詳解】解:如圖所示,延長AC與E,∵點O是△ABC的三條角平分線的交點,BM、CM分別平分∠ABC和∠ACB的外角,∴∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,∴∠2+∠3=∠OBM=90°,∠6+∠7=∠OCM=90°,∵∠OBM+∠OCM+∠BOC+∠BMC=360°,∴∠BOC+∠BMC=180°,故①正確;∵BN平分∠ABC,CM平分∠BCE,∠N+∠2=∠7,∴∠N=∠7﹣∠2=∠BCE﹣∠ABC,∵∠BCE=∠ABC+∠BAC,∴∠N=∠BAC,∵∠ODH=∠BAD+∠ABC=∠BAC+∠ABC,OH⊥BC,∴∠DOH=90°﹣∠ODH=90°﹣∠BAC﹣∠ABC,∵∠ABC+∠BAC≠90°,∴90°﹣∠BAC﹣∠ABC≠∠BAC,∴∠N≠∠DOH,故②錯誤;∵∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,∴∠BOD=∠COH,故③正確;∵∠CBA=∠CAB,∴∠1=∠2=∠BAC,∵∠N=∠BAC,∴∠1=∠N,∴MN∥AB,故④正確,故答案為:①③④.【考點】本題主要考查的是三角形與角平分線的綜合運用,熟練掌握角平分線的性質是解題的關鍵.4、【解析】【分析】作FH垂直于FE,交AC于點H,可證得,由對應邊、對應角相等可得出,進而可求出,則.【詳解】作FH垂直于FE,交AC于點H,∵又∵,∴∵,F(xiàn)A=CF∴∴FH=FE∵∵∴又∵DF=DF∴∴∵∴∵∴∴故答案為:.【考點】本題考查了等腰三角形的性質,全等三角形的判定及其性質,作輔助線HF垂直于FE是解題的關鍵.5、【解析】【分析】由∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,而P1B、P1C分別平分∠ABC和∠ACD,得到∠ACD=2∠P1CD,∠ABC=2∠P1BC,于是有∠A=2∠P1,同理可得∠P1=2∠P2,即∠A=22∠P2,因此找出規(guī)律.【詳解】∵P1B、P1C分別平分∠ABC和∠ACD,∴∠ACD=2∠P1CD,∠ABC=2∠P1BC,而∠P1CD=∠P1+∠P1BC,∠ACD=∠ABC+∠A,∴∠A=2∠P1,∴∠P1=∠A,同理可得∠P1=2∠P2,即∠A=22∠P2,∴∠A=2n∠Pn,∴∠Pn=.故答案為:.【考點】本題考查了三角形的內角和定理:三角形的內角和為180°.也考查了三角形的外角性質以及角平分線性質,難度適中.6、40【解析】【詳解】由折疊可得∠EDC=90°,∠BED=∠FED,由角平分線和三角形內角和得∠DEC=70°,再利用三角形外角的性質可得答案.【解答】解:由折疊可得:∠EDF=,,∵∠BDF+∠GDA=180°,∴∠EDF+∠GDC=90°,∵∠ACB=40°,∴∠GCD=40÷2=20°,∴∠DEC=180°﹣90°﹣20°=70°,由折疊可得:∠BED=∠DEF=70°+∠CEF,由三角形外角的性質可得,∠BED=90°+20°=110°,∴70°+∠CEF=110°,即∠CEF=40°.故答案為:40.【考點】本題考查圖形的折疊,熟知折疊前后圖形的形狀和大小相等、得到∠BED=∠DEF并利用三角形內角和是解本題的關鍵,屬于常見題型.7、110°##110度【解析】【分析】由三角形的內角和可求得∠BAC=60°,再由角平分線的定義得∠BAD=30°,利用三角形的外角性質即可求∠ADC的度數(shù).【詳解】解:∵∠B=80°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AD平分∠BAC,∴∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=110°.故答案為:110°.【考點】本題主要考查三角形的外角性質,三角形的內角和定理,角平分線的定義,解答的關鍵是對相應的知識的掌握.三、解答題1、見解析.【解析】【分析】假設三角形的三個內角中有兩個(或三個)直角,不妨設,則,這與三角形內角和為相矛盾,不成立,由此即可證明.【詳解】證明:假設三角形的三個內角中有兩個(或三個)直角,不妨設,則,這與三角形內角和為相矛盾,不成立,所以一個三角形中不能有兩個直角.【考點】本題主要考查了反證法,解題的關鍵在于能夠熟練掌握反證法的步驟.2、∠AFE=69°.【解析】【分析】由平角求出∠AED的度數(shù),由角平分線得出∠DEF的度數(shù),再由平行線的性質即可求出∠AFE的度數(shù).【詳解】解:∵∠AEC=42°,∴∠AED=180°-∠AEC=138°.∵EF平分∠AED,∴∠DEF=∠AED=69°.∵AB∥CD,∴∠AFE=∠DEF=69°.3、見解析【解析】【分析】根據(jù),得到∠A=∠C,然后推出AF=CE,即可證明△ABF≌△CDE得到∠AFB=∠CED,則.【詳解】解:∵,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS),∴∠AFB=∠CED,∴.【考點】本題主要考查了全等三角形的性質與判定,平行線的性質與判定,熟知全等三角形的性質與判定條件是解題的關鍵.4、(1)(0,6),(8,0);(2)存在t=2.4時,使得△ODP與△ODQ的面積相等;(3)2∠GOA+∠ACE=∠OHC,理由見解析.【解析】【分析】(1)根據(jù)算術平方根的非負性,絕對值的非負性即可求解;(2)根據(jù)運動速度得到OQ=t,OP=8-2t,根據(jù)△ODP與△ODQ的面積相等列方程求解即可;(3)由∠AOC=90°,y軸平分∠GOD證得OG∥AC,過點H作HF∥OG交x軸于F,得到∠FHC=∠ACE,∠FHO=∠GOD,從而∠GOD+∠ACE=∠FHO+∠FHC,即可證得2∠GOA+∠ACE=∠OHC.【詳解】解:(1)∵,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案為:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由運動知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴,,∵△ODP與△ODQ的面積相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4時,使得△ODP與△ODQ的面積相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x軸⊥y軸,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x軸平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如圖,過點H作HF∥OG交x軸于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【考點】此題考查算術平方根的非負性,絕對值的非負性,坐標系中的動點問題,平行線的判定及性質定理,是一道較為綜合的題型.5、(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,證明見解析;(3)結論不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【解析】【分析】(1)根據(jù)三角形內角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;(2)根據(jù)三角形內角和定理進行等量轉換,即可得出∠ABP+∠ACP=90°-∠A;(3)按照(2)中同樣的方法進行等量轉換,求解即可判定.【詳解】(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,∠ABP+∠ACP=∠ABC+∠ACB-(∠PBC+∠PCB)=125°-90°=35度;

(2)猜想:∠ABP+∠ACP=90°-∠A;

證明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠A,∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴(∠ABP+∠ACP)+90°=180°-∠A,∴∠ABP+∠ACP=90°-∠A.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論