解析卷北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試卷附參考答案詳解【模擬題】_第1頁(yè)
解析卷北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試卷附參考答案詳解【模擬題】_第2頁(yè)
解析卷北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試卷附參考答案詳解【模擬題】_第3頁(yè)
解析卷北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試卷附參考答案詳解【模擬題】_第4頁(yè)
解析卷北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試卷附參考答案詳解【模擬題】_第5頁(yè)
已閱讀5頁(yè),還剩35頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北師大版9年級(jí)數(shù)學(xué)上冊(cè)期末測(cè)試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計(jì)12分)1、在正方形網(wǎng)格中,每個(gè)小正方形的頂點(diǎn)稱(chēng)為格點(diǎn),以格點(diǎn)為頂點(diǎn)的三角形叫做格點(diǎn)三角形.如圖,△ABC是格點(diǎn)三角形,在圖中的6×6正方形網(wǎng)格中作出格點(diǎn)三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格點(diǎn)三角形△ADE只算一個(gè)),這樣的格點(diǎn)三角形一共有()A.4個(gè) B.5個(gè) C.6個(gè) D.7個(gè)2、如圖,D,E分別是△ABC的邊AB,AC上的點(diǎn),連接DE,下列條件不能判定△ADE與△ABC相似的是()A.∠ADE=∠B B.∠AED=∠C C. D.3、在如圖所示的網(wǎng)格中,以點(diǎn)為位似中心,四邊形的位似圖形是(

)A.四邊形 B.四邊形C.四邊形 D.四邊形4、如圖,在矩形中,,,是矩形的對(duì)稱(chēng)中心,點(diǎn)、分別在邊、上,連接、,若,則的值為(

)A. B. C. D.5、若m,n是方程x2-x-2022=0的兩個(gè)根,則代數(shù)式(m2-2m-2022)(-n2+2n+2022)的值為(

)A.2023 B.2022 C.2021 D.20206、如圖,在正方形網(wǎng)格上有5個(gè)三角形(三角形的頂點(diǎn)均在格點(diǎn)上):①△ABC,②△ADE,③△AEF,④△AFH,⑤△AHG,在②至⑤中,與①相似的三角形是(

)A.②④ B.②⑤ C.③④ D.④⑤二、多選題(6小題,每小題2分,共計(jì)12分)1、如圖,在△ABC中,點(diǎn)D,E分別在邊AB、AC上,下列條件中能判斷△AED∽△ABC的是()A.∠AED=∠ABC B.∠ADE=∠ACBC. D.2、兩個(gè)關(guān)于的一元二次方程和,其中,,是常數(shù),且.如果是方程的一個(gè)根,那么下列各數(shù)中,一定是方程的根的是()A. B. C.2 D.-23、F,且CE:AC=1:則下列結(jié)論正確的有(

)A.△CBE≌△CDEB.DE=FEC.AE=BED.S△BEF=S四邊形ABCD2.具備下列各組條件的兩個(gè)三角形中,一定相似的是(

)A.有一個(gè)角是40°的兩個(gè)等腰三角形 B.兩個(gè)等腰直角三角形C.有一個(gè)角為100°的兩個(gè)等腰三角形 D.兩個(gè)等邊三角形4、已知:線段a、b,且,則下列說(shuō)法正確的是(

)A.a(chǎn)=2cm,b=3cm B.a(chǎn)=2k,b=3k(k≠0)C.3a=2b D.5、圖,在邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB的中點(diǎn),連接AE,DF交于點(diǎn)N,將沿AE翻折,得到,AG交DF于點(diǎn)M,延長(zhǎng)EG交AD的延長(zhǎng)線于點(diǎn)H,連接CG,ME,取ME的中點(diǎn)為點(diǎn)O,連接NO,GO.則以下結(jié)論正確的有(

)A. B. C. D.6、下列命題正確的是(

)A.菱形既是中心對(duì)稱(chēng)圖形又是軸對(duì)稱(chēng)圖形B.的算術(shù)平方根是5C.如果一個(gè)多邊形的各個(gè)內(nèi)角都等于108°,則這個(gè)多邊形是正五邊形D.如果方程有實(shí)數(shù)根,則實(shí)數(shù)第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計(jì)16分)1、已知、在同一個(gè)反比例函數(shù)圖像上,則________.2、如圖,將矩形的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無(wú)縫隙重疊的四邊形,若,,則邊的長(zhǎng)是____.3、在20世紀(jì)70年代,我國(guó)著名數(shù)學(xué)家華羅庚教授將黃金分割法作為一種“優(yōu)選法”,在全國(guó)大規(guī)模推廣,取得了很大成果.如圖,利用黃金分割法,所做將矩形窗框分為上下兩部分,其中E為邊的黃金分割點(diǎn),即.已知為2米,則線段的長(zhǎng)為_(kāi)_____米.4、如圖,在矩形紙片ABCD中,AB=12,AD=5,P為DC邊上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)D,C重合),將紙片沿AP折疊(1)當(dāng)四邊形ADPD′是正方形時(shí),CD′的長(zhǎng)為_(kāi)__.(2)當(dāng)CD′的長(zhǎng)最小時(shí),PC的長(zhǎng)為_(kāi)__.5、如圖,在邊長(zhǎng)為1的正方形ABCD中,等邊△AEF的頂點(diǎn)E、F分別在邊BC和CD上則下列結(jié)論:①CE=CF:②∠AEB=75°;③S△EFC=1;④,其中正確的有______(用序號(hào)填寫(xiě))6、如圖,在△ABC中,∠A=30°,∠B=90°,D為AB中點(diǎn),E在線段AC上,,則_____.7、在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)B的坐標(biāo)為(7,0),D,E分別是線段AO,AB上的點(diǎn),以DE所在直線為對(duì)稱(chēng)軸,把△ADE作軸對(duì)稱(chēng)變換得△A′DE,點(diǎn)A′恰好在x軸上,若△OA′D與△OAB相似,則OA′的長(zhǎng)為_(kāi)_______.(結(jié)果保留2個(gè)有效數(shù)字)8、如圖,在平行四邊形ABCD中,,,,分別以A,C為圓心,大于的長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)M,N,過(guò)M,N兩點(diǎn)作直線,與BC交于點(diǎn)E,與AD交于點(diǎn)F,連接AE,CF,則四邊形AECF的周長(zhǎng)為_(kāi)_____.四、解答題(6小題,每小題10分,共計(jì)60分)1、如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).(1)求反比例函數(shù)的解析式;(2)觀察圖象,直接寫(xiě)出正比例函數(shù)值小于反比例函數(shù)值時(shí)自變量x的取值范圍;(3)若雙曲線上點(diǎn)C(2,n)沿OA方向平移個(gè)單位長(zhǎng)度得到點(diǎn)B,在x軸上是否存在點(diǎn)P,使S△OCP=S四邊形OABC?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.2、解方程:(1)x2-x-2=0;(2)3x(x-2)=2-x.3、(1)閱讀理解如圖,點(diǎn),在反比例函數(shù)的圖象上,連接,取線段的中點(diǎn).分別過(guò)點(diǎn),,作軸的垂線,垂足為,,,交反比例函數(shù)的圖象于點(diǎn).點(diǎn),,的橫坐標(biāo)分別為,,.小紅通過(guò)觀察反比例函數(shù)的圖象,并運(yùn)用幾何知識(shí)得出結(jié)論:AE+BG=2CF,CF>DF,由此得出一個(gè)關(guān)于,,之間數(shù)量關(guān)系的命題:若,則______.(2)證明命題小東認(rèn)為:可以通過(guò)“若,則”的思路證明上述命題.小晴認(rèn)為:可以通過(guò)“若,,且,則”的思路證明上述命題.請(qǐng)你選擇一種方法證明(1)中的命題.4、如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點(diǎn)D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為θ.(1)[問(wèn)題發(fā)現(xiàn)]①當(dāng)θ=0°時(shí),=;②當(dāng)θ=180°時(shí),=;(2)[拓展研究]試判斷:當(dāng)0°≤θ<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情形給出證明;(3)[問(wèn)題解決]在旋轉(zhuǎn)過(guò)程中,BE的最大值為.5、解一元二次方程(1)(2)6、如圖,與交于點(diǎn)O,,E為延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)E作,交的延長(zhǎng)線于點(diǎn)F.(1)求證;(2)若,求的長(zhǎng).-參考答案-一、單選題1、C【解析】【分析】根據(jù)題意,得出ABC的三邊之比,并在直角坐標(biāo)系中找出與ABC各邊長(zhǎng)成比例的相似三角形,并在直角坐標(biāo)系中無(wú)一遺漏地表示出來(lái).【詳解】解:ABC的三邊之比為,如圖所示,可能出現(xiàn)的相似三角形共有以下六種情況:所以使得△ADE∽△ABC的格點(diǎn)三角形一共有6個(gè),故選:C.【考點(diǎn)】本題考察了在直角坐標(biāo)系中畫(huà)出與已知三角形相似的圖形,解題的關(guān)鍵在于找出與已知三角形各邊長(zhǎng)成比例的三角形,并在直角坐標(biāo)系中無(wú)一遺漏地表示出來(lái).2、D【解析】【分析】根據(jù)相似三角形的判定定理逐個(gè)分析判斷即可.【詳解】解:∵∠ADE=∠B,∴故A能判定△ADE與△ABC相似,不符合題意;∠AED=∠C,∴故B能判定△ADE與△ABC相似,不符合題意;,∴故C能判定△ADE與△ABC相似,不符合題意;,條件未給出,不能判定△ADE與△ABC相似,故D符合題意故選D【考點(diǎn)】本題考查了相似三角形的判定定理,掌握相似三角形的判定定理是解題的關(guān)鍵.3、A【解析】【分析】以O(shè)為位似中心,作四邊形ABCD的位似圖形,根據(jù)圖像可判斷出答案.【詳解】解:如圖所示,四邊形的位似圖形是四邊形.故選:A【考點(diǎn)】此題考查了位似圖形的作法,畫(huà)位似圖形的一般步驟為:①確定位似中心;②分別連接并延長(zhǎng)位似中心和能代表原圖的關(guān)鍵點(diǎn);③根據(jù)相似比,確定能代表所作的位似圖形的關(guān)鍵點(diǎn);順次連接上述各點(diǎn),確定位似圖形.4、D【解析】【分析】連接AC,BD,過(guò)點(diǎn)O作于點(diǎn),交于點(diǎn),利用勾股定理求得的長(zhǎng)即可解題.【詳解】解:如圖,連接AC,BD,過(guò)點(diǎn)O作于點(diǎn),交于點(diǎn),四邊形ABCD是矩形,同理可得故選:D.【考點(diǎn)】本題考查中心對(duì)稱(chēng)、矩形的性質(zhì)、勾股定理等知識(shí),學(xué)會(huì)添加輔助線,構(gòu)造直角三角形是解題關(guān)鍵.5、B【解析】【詳解】解:∵m、n是方程x2-x-2022=0的兩個(gè)根,∴m2-m-2022=0,n2-n-2022=0,mn=-2022,∴m2-m=2022,n2-n=2022,∴(m2-2m-2022)(-n2+2n+2022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故選:B.【考點(diǎn)】本題考查了一元二次方程的解的定義和一元二次方程根與系數(shù)的關(guān)系,能根據(jù)已知條件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此題的關(guān)鍵.6、A【解析】【分析】根據(jù)兩邊成比例夾角相等兩三角形相似即可判斷.【詳解】解:由題意:①②④中,∠ABC=∠ADE=∠AFH=135°,又∵,∴,,∴△ABC∽△ADE∽△HFA,故選:A.【考點(diǎn)】本題考查相似三角形的判定,解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.二、多選題1、ABD【解析】【分析】根據(jù)三角形相似的判斷方法判斷即可.【詳解】解:A、∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,符合題意;B、∵∠ADE=∠AC,∠A=∠A,∴△AED∽△ABC,符合題意;C、,不能判定△AED∽△ABC,不符合題意;D、∵,∠A=∠A,∴△AED∽△ABC,符合題意.故選:ABD.【考點(diǎn)】此題考查了三角形相似的判斷方法,解題的關(guān)鍵是熟練掌握三角形相似的判定方法.2、AD【解析】【分析】利用方程根的定義去驗(yàn)證判斷即可.【詳解】∵,,∴,∴,,∴,,∵是方程的一個(gè)根,∴是方程的一個(gè)根,∴是方程的一個(gè)根,即時(shí)方程的一個(gè)根.∵是方程的一個(gè)根,∴,當(dāng)x=時(shí),,∴是方程的根.故選:A,D.【考點(diǎn)】本題考查了一元二次方程根的定義即使得方程兩邊相等的未知數(shù)的值,正確理解定義是解題的關(guān)鍵.3、BCD【解析】【分析】根據(jù)相似三角形的判定方法一一判斷即可.【詳解】A.有一個(gè)角是40°的兩個(gè)等腰三角形,當(dāng)40°的角為等腰三角形的底角,當(dāng)40°的角為等腰三角形頂角,兩個(gè)三角形內(nèi)角分別為40°、40°、100°和40°、70°、70°,則兩三角形不相似,故選項(xiàng)A不合題意B.等腰直角三角形的內(nèi)角均為45°,45°,90°,根據(jù)三角形相似判定方法等腰直角三角形有兩組角對(duì)應(yīng)相等,兩個(gè)三角形相似,一定相似,故選項(xiàng)B符合題意;C.∵100°>90°,∴100°的角只能是等腰三角形的頂角,另兩個(gè)角分別為40°,40°,根據(jù)三角形相似判定定理,有兩組角對(duì)應(yīng)相等的三角形相似,故選項(xiàng)C符合題意;D.∵等邊三角形的內(nèi)角都是60°,根據(jù)三角形相似判定定理,兩個(gè)等邊三角形有兩個(gè)角對(duì)應(yīng)相等,兩個(gè)三角形相似,故選項(xiàng)D符合題意.故選:BCD.【考點(diǎn)】考查相似三角形的判定方法,掌握相似三角形判定的4種方法是解題的關(guān)鍵.4、BCD【解析】【分析】根據(jù)比例的定義和性質(zhì),對(duì)選項(xiàng)一一分析,即可選出正確答案.【詳解】解:A、兩條線段的比,沒(méi)有長(zhǎng)度單位,它與所采用的長(zhǎng)度單位無(wú)關(guān),故選項(xiàng)錯(cuò)誤,不符合題意;B、,根據(jù)等比性質(zhì),a=2k,b=3k(k>0),故選項(xiàng)正確,符合題意;C、?3a=2b,故選項(xiàng)正確,符合題意;D、?a=b,故選項(xiàng)正確,符合題意.故選:BCD.【考點(diǎn)】本題考查了比例的性質(zhì).在比例里,兩個(gè)外項(xiàng)的乘積等于兩個(gè)內(nèi)項(xiàng)的乘積.注意兩條線段的比,沒(méi)有長(zhǎng)度單位,它與所采用的長(zhǎng)度單位無(wú)關(guān).5、ABC【解析】【詳解】解:∵四邊形ABCD是正方形,∴AD=AB=BC,∠DAB=∠B=90°,∴∠ADF+∠AFD=90°,∵點(diǎn)E、F分別是邊BC、AB的中點(diǎn),∴AF=AB,BE=EC=BC,∴AF=BE,∴△DAF≌△ABE(SAS),∴∠BAE=∠ADF,∴∠BAE+∠AFD=90°,∴∠ANF=180°-(∠BAE+∠AFD)=90°,∴∠AND=90°,故A正確;∵四邊形ABCD是正方形,∴AD∥BC,∴∠DAE=∠AEB,由折疊得:∠AEB=∠AEG,∴∠DAE=∠AEG,∴AH=EH,故B正確;由折疊得:∠AEB=∠AEG=(180°-∠GEC),GE=BE=EC,∴∠EGC=∠ECG=(180°-∠GEC),∴.∠AEB=∠GCE,∴AE∥CG,故C正確;∵O為ME中點(diǎn),∴,,∴+,∵+-,且△AGE≌△DAF,∴+-,∵∠AND=90°=∠ANF,∠FAN=∠MAN,AN=AN,∴△ANF≌△ANM,∴+-,∴,只有M是邊DN中點(diǎn)的時(shí),D才成立,故D錯(cuò)誤;故選A、B、C.【考點(diǎn)】本題考查正方形和折疊的綜合應(yīng)用,熟練掌握正方形的性質(zhì)、折疊的性質(zhì)、三角形全等的判定和性質(zhì)、三角形內(nèi)角和定理、平行線的判定等是解題關(guān)鍵.6、AD【解析】【分析】利用菱形的對(duì)稱(chēng)性、算術(shù)平方根的定義、多邊形的內(nèi)角和、一元二次方程根的判別式等知識(shí)分別判斷后即可確定正確的選項(xiàng).【詳解】解:A、菱形既是中心對(duì)稱(chēng)圖形又是軸對(duì)稱(chēng)圖形,故命題正確,符合題意;B、的算術(shù)平方根是,故命題錯(cuò)誤,不符合題意;C、若一個(gè)多邊形的各內(nèi)角都等于108°,各邊也相等,則它是正五邊形,故命題錯(cuò)誤,不符合題意;D、對(duì)于方程,當(dāng)a=0時(shí),方程,變?yōu)?x+1=0,有實(shí)數(shù)根,當(dāng)a≠0時(shí),時(shí),即,方程有實(shí)數(shù)根,綜上所述,方程有實(shí)數(shù)根,則實(shí)數(shù),故命題正確,符合題意.故選:AD.【考點(diǎn)】考查了命題與定理的知識(shí),解題的關(guān)鍵是了解算術(shù)平方根的定義、菱形的對(duì)稱(chēng)性、多邊形的內(nèi)角和、一元二次方程根的判別式等知識(shí),難度不大.三、填空題1、【解析】【分析】首先設(shè)反比例函數(shù)解析式為,然后將兩點(diǎn)坐標(biāo)分別代入,即可得出和的表達(dá)式,進(jìn)而得解.【詳解】解:設(shè)反比例函數(shù)解析式為,將、分別代入,得,∴故答案為.【考點(diǎn)】此題主要考查反比例函數(shù)的性質(zhì),熟練掌握,即可解題.2、【解析】【分析】由折疊的性質(zhì)和矩形的性質(zhì)可得∠HEF=90°,EA=EB=3,證明△HNG≌△FME,求出HF,設(shè)AH=x,在△AEH,△BEF和△EFH中,利用勾股定理列出方程,求出x,即可得到EH.【詳解】解:∵四邊形ABCD是矩形,∴∠A=∠B=∠D=90°,由折疊可知:△EAH≌△EMH,△HNG≌△HDG,△FBE≌△FME,∴EA=EM,AH=MH,HD=HN,EB=EM,F(xiàn)B=FM,∠AEH=∠MEH,∠BEF=∠MEF,∠BME=∠B=90°,∠HNG=∠D=90°,∴EA=EB=AB=3,∵∠AEH+∠MEH+∠BEF+∠MEF=180°,∴2∠MEH+2∠MEF=180°,∴∠HEF=90°,同理可知:∠EHG=∠EFG=∠HGF=90°,∴四邊形EHGF是矩形,∴HG∥FE,HG=FE,∴∠GHN=∠EFM,在△HNG和△FME中,,∴△HNG≌△FME(AAS),∴HN=FM,∴HD=FM,∴HF=HM+FM=AH+HD=AD=10,設(shè)AH=x,則HD=FM=FB=10-x,∵,,,∴,即,解得:x=1或x=9(舍),∴AH=1,∴,故答案為:.【考點(diǎn)】本題考查了翻折變換,矩形的性質(zhì),勾股定理,全等三角形的判定和性質(zhì),利用勾股定理列出方程是本題的關(guān)鍵.3、##【解析】【分析】根據(jù)點(diǎn)E是AB的黃金分割點(diǎn),可得,代入數(shù)值得出答案.【詳解】∵點(diǎn)E是AB的黃金分割點(diǎn),∴.∵AB=2米,∴米.故答案為:().【考點(diǎn)】本題主要考查了黃金分割的應(yīng)用,掌握黃金比是解題的關(guān)鍵.4、

【解析】【分析】(1)根據(jù)四邊形是正方形,得到從而得到再利用勾股定理求解即可得到答案;(2)如圖:連接,運(yùn)用矩形的性質(zhì)和折疊的性質(zhì)求出的最小值,再設(shè),則,最后在中運(yùn)用勾股定理解答即可【詳解】解:(1)如圖所示,∵四邊形是正方形∴∵∴∵四邊形ABCD是矩形∴,∠B=90°∴(2)如圖:連接,當(dāng)點(diǎn)在上時(shí),有最小值.∵四邊形是矩形,,,∴,,∴.由折疊性質(zhì),得,,∴的最小值.設(shè),則.在中,,即,解得,∴的長(zhǎng)為.故答案為:.【考點(diǎn)】本題主要考查矩形的性質(zhì)和折疊的性質(zhì),正方形的性質(zhì),勾股定理,根據(jù)矩形的性質(zhì)和折疊的性質(zhì)確定的最小值成為解答本題的關(guān)鍵.5、①②④【解析】【分析】根據(jù)三角形的全等的知識(shí)可以判斷①的正誤;根據(jù)角角之間的數(shù)量關(guān)系,以及三角形內(nèi)角和為180°判斷②的正誤;根據(jù)等邊三角形的邊長(zhǎng)求得直角三角形的邊長(zhǎng),從而求得面積③的正誤,根據(jù)勾股定理列方程可以判斷④的正誤.【詳解】解:∵四邊形ABCD是正方形,∴AB=AD,∵△AEF是等邊三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC-BE=CD-DF,∴CE=CF,∴①說(shuō)法正確;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②說(shuō)法正確;∵正方形ABCD的邊長(zhǎng)為1,③說(shuō)法錯(cuò)誤,∵∠AEB=75°,∠AEF=60°,∴∠CEF=45°,∴△CEF是等腰直角三角形,設(shè)BE=DF=x,∴CE=CF=1-x,(不合題意,舍去),∴EF=;④說(shuō)法正確;∴正確的有①②④.故答案為①②④.【考點(diǎn)】本題主要考查正方形的性質(zhì)的知識(shí)點(diǎn),解答本題的關(guān)鍵是熟練掌握全等三角形的證明以及輔助線的正確作法,此題難度不大.6、或【解析】【分析】由題意可求出,取AC中點(diǎn)E1,連接DE1,則DE1是△ABC的中位線,滿足,進(jìn)而可求此時(shí),然后在AC上取一點(diǎn)E2,使得DE1=DE2,則,證明△DE1E2是等邊三角形,求出E1E2=,即可得到,問(wèn)題得解.【詳解】解:∵D為AB中點(diǎn),∴,即,取AC中點(diǎn)E1,連接DE1,則DE1是△ABC的中位線,此時(shí)DE1∥BC,,∴,在AC上取一點(diǎn)E2,使得DE1=DE2,則,∵∠A=30°,∠B=90°,∴∠C=60°,BC=,∵DE1∥BC,∴∠DE1E2=60°,∴△DE1E2是等邊三角形,∴DE1=DE2=E1E2=,∴E1E2=,∵,∴,即,綜上,的值為:或,故答案為:或.【考點(diǎn)】本題考查了三角形中位線的性質(zhì),平行線分線段成比例,等邊三角形的判定和性質(zhì)以及含30°角的直角三角形的性質(zhì)等,根據(jù)進(jìn)行分情況求解是解題的關(guān)鍵.7、2.0或3.3【解析】【分析】由點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)B的坐標(biāo)為(7,0),可得OA=5,OB=7,AB=4,然后分別由△OA′D∽△OAB與△OA′D∽△OBA,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可得答案.【詳解】∵點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)B的坐標(biāo)為(7,0),∴OA==5,OB=7,AB==4,若△OA′D∽△OAB,則,設(shè)AD=x,則OD=5﹣x,A′D=x,即,解得:x≈2.2,∴,∴OA′=2.0;若△OA′D∽△OBA,則,同理:可得:OA′≈3.3.故答案為2.0或3.3.【考點(diǎn)】此題考查了相似三角形的性質(zhì)與折疊的知識(shí).注意數(shù)形結(jié)合與方程思想的應(yīng)用,小心別漏解是解題關(guān)鍵.8、10【解析】【分析】根據(jù)作圖可得,且平分,設(shè)與的交點(diǎn)為,證明四邊形為菱形,根據(jù)平行線分線段成比例可得為的中線,然后勾股定理求得,根據(jù)直角三角形中斜邊上的中線等于斜邊的一半可得的長(zhǎng),進(jìn)而根據(jù)菱形的性質(zhì)即可求解.【詳解】解:如圖,設(shè)與的交點(diǎn)為,根據(jù)作圖可得,且平分,,四邊形是平行四邊形,,,又,,,,,四邊形是平行四邊形,垂直平分,,四邊形是菱形,,,,,為的中點(diǎn),中,,,,,四邊形AECF的周長(zhǎng)為.故答案為:.【考點(diǎn)】本題考查了垂直平分線的性質(zhì),菱形的性質(zhì)與判定,勾股定理,平行線分線段成比例,平行四邊形的性質(zhì)與判定,綜合運(yùn)用以上知識(shí)是解題的關(guān)鍵.四、解答題1、(1);(2)或;(3)在x軸上是否存在點(diǎn)P,見(jiàn)解析.【解析】【分析】(1)設(shè)反比例函數(shù)的解析式為y=(k>0),然后根據(jù)條件求出A點(diǎn)坐標(biāo),再求出k的值,進(jìn)而求出反比例函數(shù)的解析式;(2)直接由圖象得出正比例函數(shù)值小于反比例函數(shù)值時(shí)自變量x的取值范圍;(3)首先證明四邊形OABC是菱形,然后求出AC、OB的長(zhǎng)度,計(jì)算出菱形OABC的面積,從而得到△OCP的面積,列方程求解即可..【詳解】解:(1)設(shè)反比例函數(shù)的解析式為y=(k>0),∵A(m,?2)在y=2x上,∴?2=2m,∴m=?1,∴A(?1,?2),又∵點(diǎn)A在y=上,∴k=2,∴反比例函數(shù)的解析式為y=2x;

(2)由反比例函數(shù)的對(duì)稱(chēng)性可知,與一次函數(shù)再第一象限內(nèi)的交點(diǎn)坐標(biāo)為:(1,2),觀察圖像可知:正比例函數(shù)值小于反比例函數(shù)值時(shí)自變量的取值范圍:或;(3)在上,

即,,四邊形為菱形

的解析式為y=2x-3,

的解析式,

假設(shè)在軸上存在使,,假設(shè)成立,在軸上存在點(diǎn)使【考點(diǎn)】本題主要考查了反比例函數(shù)的綜合,解答本題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì)以及菱形的判定定理,此題難度不大,是一道不錯(cuò)的中考試題.2、(1)x1=2,x2=-1(2)x1=-,x2=2【解析】【分析】(1)利用因式分解法解方程;(2)利用因式分解法解方程;(1)解:x2-x-2=0,(x-2)(x+1)=0,x-2=0或x+1=0,x1=2,x2=-1.(2)解:3x(x-2)=2-x,3x(x-2)+(x-2)=0,(3x+1)(x-2)=0,3x+1=0或x-2=0,x1=-,x2=2.【考點(diǎn)】本題考查了因式分解法解一元二次方程:將方程的右邊化為零,把方程的左邊分解為兩個(gè)一次因式的積,令每個(gè)因式分別為零,解這兩個(gè)一元一次方程,它們的解就是原方程的解.3、(1);(2)證明見(jiàn)解析.【解析】【分析】(1)求出AE,BG,DF,利用AE+BG=2CF,可得.(2)利用求差法比較大小.【詳解】(1)∵,,,,,∴.(2)∵,∵,∴,∴,∴.【考點(diǎn)】本題考查反比例函數(shù)圖形上的點(diǎn)的坐標(biāo)特征,反比例函數(shù)的圖象等知識(shí),解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題.4、(1)①;②;(2)當(dāng)0°≤θ<360°時(shí),的大小沒(méi)有變化;證明見(jiàn)解析;(3)4+2.【解析】【分析】(1)①利用等腰三角形的性質(zhì)判斷出∠A=∠B,∠A=∠AED,進(jìn)而得出∠B=∠DEA,得出DE∥BC,即可得出結(jié)論;②同①的方法,即可得出結(jié)論;(2)利用兩邊成比例,夾角相等

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論