解析卷北師大版9年級數(shù)學上冊期末試卷AB卷附答案詳解_第1頁
解析卷北師大版9年級數(shù)學上冊期末試卷AB卷附答案詳解_第2頁
解析卷北師大版9年級數(shù)學上冊期末試卷AB卷附答案詳解_第3頁
解析卷北師大版9年級數(shù)學上冊期末試卷AB卷附答案詳解_第4頁
解析卷北師大版9年級數(shù)學上冊期末試卷AB卷附答案詳解_第5頁
已閱讀5頁,還剩28頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北師大版9年級數(shù)學上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、如圖,在四邊形ABCD中,,且AD=DC,則下列說法:①四邊形ABCD是平行四邊形;②AB=BC;③AC⊥BD;④AC平分∠BAD;⑤若AC=6,BD=8,則四邊形ABCD的面積為24,其中正確的有(

)A.2個 B.3個 C.4個 D.5個2、如圖,菱形對角線交點與坐標原點重合,點,則點的坐標為(

)A. B. C. D.3、把方程x2+2x=5(x﹣2)化成ax2+bx+c=0的形式,則a,b,c的值分別為()A.1,﹣3,2 B.1,7,﹣10 C.1,﹣5,12 D.1,﹣3,104、如圖,G是正方形ABCD內一點,以GC為邊長,作正方形GCEF,連接BG和DE,試用旋轉的思想說明線段BG與DE的關系()A.DE=BG B.DE>BG C.DE<BG D.DE≥BG5、直角三角形的面積為,斜邊上的中線為,則這個三角形周長為(

)A. B.C. D.6、下列方程中,一定是關于x的一元二次方程的是(

)A. B.C. D.二、多選題(6小題,每小題2分,共計12分)1、下列命題是真命題的是()A.過線段中點的直線是線段的垂直平分線B.對角線互相平分且相等的四邊形是矩形C.三角形的中位線將三角形的面積分成1:2兩部分D.對角線互相垂直的矩形是正方形2、手工制作課上,小紅利用一些花布的邊角料,剪裁后裝裱手工畫.下面四個圖案是她剪裁出的空心不等邊三角形.等邊三角形.正方形和矩形花邊,其中每個圖案花邊的寬度都相同,那么每個圖案中花邊的內外邊緣所圍成的幾何圖形相似的是(

)A. B.C. D.3、如圖,在直角坐標系中,直線y1=2x﹣2與坐標軸交于A、B兩點,與雙曲線y2=(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,則以下結論中正確的是(

)A.S△ADB=S△ADC;B.當0<x<3時,y1<y2;C.如圖,當x=3時,EF=;D.當x>0時,y1隨x的增大而增大,y2隨x的增大而減小.4、如圖,在△ABC中,點P為AB上一點,給出下列四個條件中能滿足△APC和△ACB相似的條件是(

)A.∠ACP=∠B B.∠APC=∠ACB C.AC2=AP·AB D.AB·CP=AP·CB5、下列方程中是一元二次方程的有(

)A.B.C.D.E.F.6、有下列四個命題,其中不正確的為(

)A.兩條對角線互相平分的四邊形是平行四邊形B.兩條對角線相等的四邊形是菱形C.兩條對角線互相垂直的四邊形是正方形D.兩條對角線相等且互相垂直的四邊形是正方形第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、請寫出一個反比例函數(shù)的表達式,滿足條件當x>0時,y隨x的增大而增大,則此函數(shù)的表達式可以為_____.2、如圖,在矩形紙片ABCD中,AB=12,AD=5,P為DC邊上的動點(點P不與點D,C重合),將紙片沿AP折疊(1)當四邊形ADPD′是正方形時,CD′的長為___.(2)當CD′的長最小時,PC的長為___.3、如圖,在Rt△ABC中,∠C=90°,AC=8cm,BC=2cm,點P在邊AC上,以2cm/s的速度從點A向點C移動,點Q在邊CB上,以1cm/s的速度從點C向點B移動.點P、Q同時出發(fā),且當一點移動到終點時,另一點也隨之停止,連接PQ,當△PQC的面積為3cm2時,P、Q運動的時間是_____秒.4、一個直角三角形的兩條直角邊相差5cm,面積是7cm2,則其斜邊的長是___.5、某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元,由于疫情,為了擴大銷售量,盡快減少庫存,商場決定采取適當?shù)慕祪r措施,經調查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出2件.若商場平均每天銷售這種襯衫的盈利要達到1200元,則每件襯衫應降價多少元?設每件襯衫降價x元,由題意列得方程______.6、布袋中有紅、黃、藍三個球,它們除顏色不同以外,其他都相同,從袋中隨機取出一個球后再放回袋中,這樣取出球的順序依次是“紅—黃—藍”的概率是__________.7、如圖,在Rt△ABC中,∠ACB=90°,,點D為AB的中點,點P在AC上,且CP=1,將CP繞點C在平面內旋轉,點P的對應點為點Q,連接AQ,DQ.當∠ADQ=90°時,AQ的長為______.8、如圖,四邊形ABCD為菱形,,延長BC到E,在內作射線CM,使得,過點D作,垂足為F.若,則對角線BD的長為______.四、解答題(6小題,每小題10分,共計60分)1、已知反比例函數(shù)y=(m為常數(shù))的圖象在第一、三象限.(1)求m的取值范圍;(2)如圖,若該反比例函數(shù)的圖象經過?ABOD的頂點D,點A,B的坐標分別為(0,3),(﹣2,0),求出該反比例函數(shù)的解析式;(3)若E(x1,y1),F(xiàn)(x2,y2)都在該反比例函數(shù)的圖象上,且x1>x2>0,則y1和y2有怎樣的大小關系?2、已知點P(2,2)在反比例函數(shù)y=(k≠0)的圖象上.(1)當x=-3時,求y的值;(2)當1<x<3時,求y的取值范圍.3、已知,AB=18,動點P從點A出發(fā),以每秒1個單位的速度向點B運動,分別以AP、BP為邊在AB的同側作正方形.設點P的運動時間為t.(1)如圖1,若兩個正方形的面積之和,當時,求出的大小;(2)如圖2,當取不同值時,判斷直線和的位置關系,說明理由;(3)如圖3,用表示出四邊形的面積.4、解方程(1)2x2﹣4x﹣1=0

(2)3x(x﹣1)=2﹣2x5、如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E是BC上的一個動點,連接DE,交AC于點F.(1)如圖①,當時,求的值;(2)如圖②,當點E是BC的中點時,過點F作FG⊥BC于點G,求證:CG=BG.

6、如圖,一次函數(shù)y=ax+b(a、b為常數(shù),且a>0)與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象相交于點A(3,4),與x軸交于點C.(1)求反比例函數(shù)的解析式;(2)點P在x軸上,且P的坐標為(7,0),ACP的面積為20,求一次函數(shù)的解析式.-參考答案-一、單選題1、D【解析】【分析】由,可知四邊形ABCD是平行四邊形,可判斷①的正誤;由AD=DC,可知平行四邊形ABCD是菱形,根據(jù)菱形的性質可判斷②③④⑤的正誤.【詳解】解:∵,∴四邊形ABCD是平行四邊形,故①正確;∵AD=DC,∴平行四邊形ABCD是菱形,∴AB=BC,AC⊥BD,AC平分∠BAD,故②③④正確;∵AC=6,BD=8,∴菱形ABCD的面積=,故⑤正確;∴正確的個數(shù)有5個,故選D.【考點】本題考查了平行四邊形的判定,菱形的判定與性質.解題的關鍵在于證明四邊形ABCD是菱形.2、B【解析】【分析】根據(jù)菱形的中心對稱性,A、C坐標關于原點對稱,利用橫反縱也反的口訣求解即可.【詳解】∵菱形是中心對稱圖形,且對稱中心為原點,∴A、C坐標關于原點對稱,∴C的坐標為,故選C.【考點】本題考查了菱形的中心對稱性質,原點對稱,熟練掌握菱形的性質,關于原點對稱點的坐標特點是解題的關鍵.3、D【解析】【分析】先把x2+2x=5(x﹣2)化簡,然后根據(jù)一元二次方程的一般形式即可得到a、b、c的值.【詳解】解:x2+2x=5(x﹣2),x2+2x=5x﹣10,x2+2x﹣5x+10=0,x2﹣3x+10=0,則a=1,b=﹣3,c=10,故選:D.【考點】此題主要考查了一元二次方程化為一般形式,熟練掌握一元二次方程的一般形式是解題的關鍵.4、A【解析】【分析】根據(jù)四邊形ABCD為正方形,得出BC=DC,∠BCD=90°,根據(jù)四邊形CEFG為正方形,得出GC=EC,∠GCE=90°,再證∠BCG=∠DCE,△BCG與△DCE具有可旋轉的特征即可【詳解】解:∵四邊形ABCD為正方形,∴BC=DC,∠BCD=90°,∵四邊形CEFG為正方形,∴GC=EC,∠GCE=90°,∵∠BCG+∠GCD=∠GCD+∠DCE=90°,∴∠BCG=∠DCE,∴△BCG繞點C順時針方向旋轉90°得到△DCE,∴BG=DE,故選項A.【考點】本題考查圖形旋轉特征,正方形性質,三角形全等條件,同角的余角性質,掌握圖形旋轉特征,正方形性質,三角形全等條件是解題關鍵.5、D【解析】【分析】根據(jù)直角三角形的性質求出斜邊長,根據(jù)勾股定理、完全平方公式計算即可.【詳解】解:設直角三角形的兩條直角邊分別為x、y,∵斜邊上的中線為d,∴斜邊長為2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面積為S,∴,則2xy=4S,即(x+y)2=4d2+4S,∴∴這個三角形周長為:,故選D.【考點】本題考查的是勾股定理的應用,直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.6、B【解析】【分析】根據(jù)一元二次方程的概念(只含一個未知數(shù),并且含有未知數(shù)的項的次數(shù)最高為2次的整式方程是一元二次方程)逐一進行判斷即可得.【詳解】解:A、,當時,不是一元二次方程,故不符合題意;B、,是一元二次方程,符合題意;C、,不是整式方程,故不符合題意;D、,整理得:,不是一元二次方程,故不符合題意;故選:B.【考點】本題考查了一元二次方程的定義,熟練掌握其定義是解題的關鍵.二、多選題1、BD【解析】【分析】根據(jù)線段垂直平分線的定義,矩形的判定方法,三角形中位線的性質,以及正方形的判定方法逐項分析即可【詳解】解:A.過線段中點且與這條線段垂直的直線是線段的垂直平分線,故原說法錯誤;B.對角線互相平分且相等的四邊形是矩形,正確;C.如圖,DE是△ABC的中位線,作AM⊥BC于M,交DE于N,∵DE是△ABC的中位線,∴DE=BC,AN=AM,∵S△ADE==,S△ABC=,∴S△ADE=S△ABC,∴S△ADE=S四邊形BCED,∴三角形的中位線將三角形的面積分成1:3兩部分,故原說法錯誤;D.對角線互相垂直的矩形是正方形,正確;故選BD.【考點】此題主要考查命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的定義、性質定理及判定定理.2、ABC【解析】【分析】根據(jù)相似圖形的定義,結合圖形,對選項一一分析,排除不符合要求答案.【詳解】解:A、形狀相同,符合相似形的定義,對應角相等,所以三角形相似,故該選項符合題意;B、形狀相同,符合相似形的定義,故該選項符合題意;C、形狀相同,符合相似形的定義,故該選項符合題意;D、兩個矩形,雖然四個角對應相等,但對應邊不成比例,故該選項不符合題意;故選:ABC.【考點】本題考查的是相似形的概念,聯(lián)系圖形,即形狀相同,大小不一定相同的圖形叫做相似形.全等形是相似形的一個特例.3、ACD【解析】【分析】對于直線解析式,分別令x與y為0求出y與x的值,確定出A與B坐標,利用AAS得到三角形OBA與三角形CDA全等,利用全等三角形對應邊相等得到,確定出C坐標,代入反比例解析式求出k的值,確定出反比例解析式,由圖象判斷時x的范圍,以及與的增減性,把分別代入直線與反比例解析式,相減求出EF的長,即可做出判斷.【詳解】解:對于直線,令,得到;令,得到,,,即,,在和中,,,,(同底等高三角形面積相等),選項A正確;,把C點坐標代入反比例解析式得:,即,由函數(shù)圖象得:當時,,選項B錯誤;當時,,,即,選項C正確;當時,隨x的增大而增大,隨x的增大而減小,選項D正確.故選:ACD.【考點】此題考查了反比例函數(shù)與一次函數(shù)的交點,涉及的知識有:一次函數(shù)與坐標系的交點,待定系數(shù)法確定反比例函數(shù)解析式,坐標與圖形性質以及反比例函數(shù)的性質,熟練掌握函數(shù)的性質是解本題的關鍵.4、ABC【解析】【分析】根據(jù)相似三角形的判定定理逐項判斷即可.【詳解】解:A、∵∠ACP=∠B,∠A=∠A,∴△APC∽△ACB,故選項A符合題意;B、∵∠APC=∠ACB,∠A=∠A,∴△APC∽△ACB,故選項B符合題意;C、∵AC2=AP·AB,∠A=∠A,∴△APC∽△ACB,故選項C符合題意;D、AB·CP=AP·CB不是兩個對應邊成比例,不能證明△APC和△ACB相似,故選項D不符合條件,故選:ABC.【考點】本題考查相似三角形的判定,熟練掌握相似三角形的判定方法是解答的關鍵.5、BCD【解析】【分析】根據(jù)一元二次方程的定義對6個選項逐一進行分析.【詳解】A中最高次數(shù)是3不是2,故本選項錯誤;B符合一元二次方程的定義,故本選項正確;C原式可化為4x2—=0,符合一元二次方程的定義,故本選項正確;D原式可化為2x2十x-1=0,符合一元二次方程的定義,故本選項正確;E原式可化為2x+1=0,不符合一元二次方程的定義,故本選項錯誤;Fax2+bx+c=0,只有在滿足a≠0的條件下才是一元二次方程,故本選項錯誤.故答案為:BCD【考點】本題考查了一元二次方程的概念,只有一個未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0)特別要注意a≠0的條件,這是在做題過程中容易忽視的知識點.6、BCD【解析】【分析】利用平行四邊形的判定、菱形的判定及正方形的判定逐一判斷后即可確定正確的選項.【詳解】解:A、兩條對角線互相平分的四邊形是平行四邊形,故此選項不符合題意;B、兩條對角線互相垂直平分的四邊形是菱形,故此選項符合題意;C、兩條對角線互相垂直平分且相等的四邊形是正方形,故此選項符合題意;D、兩條對角線相等且互相垂直平分的四邊形是正方形,故此選項符合題意.故選BCD.【考點】本題考查了命題與定理的知識,了解平行四邊形的判定、菱形的判定及正方形的判定是解答本題的關鍵,難度較?。?、填空題1、答案不唯一,如【解析】【分析】依題意反比例函數(shù)中k0,即可寫出一個.【詳解】∵當時,隨的增大而增大,∴反比例函數(shù)中k0,故可寫出若干,如.【考點】此題主要考察反比例函數(shù)的圖像2、

【解析】【分析】(1)根據(jù)四邊形是正方形,得到從而得到再利用勾股定理求解即可得到答案;(2)如圖:連接,運用矩形的性質和折疊的性質求出的最小值,再設,則,最后在中運用勾股定理解答即可【詳解】解:(1)如圖所示,∵四邊形是正方形∴∵∴∵四邊形ABCD是矩形∴,∠B=90°∴(2)如圖:連接,當點在上時,有最小值.∵四邊形是矩形,,,∴,,∴.由折疊性質,得,,∴的最小值.設,則.在中,,即,解得,∴的長為.故答案為:.【考點】本題主要考查矩形的性質和折疊的性質,正方形的性質,勾股定理,根據(jù)矩形的性質和折疊的性質確定的最小值成為解答本題的關鍵.3、1【解析】【分析】設P、Q運動的時間是秒,根據(jù)已知條件得到cm,cm,則cm,根據(jù)三角形面積公式列出方程,解方程即可求解.【詳解】解:設P、Q運動的時間是秒,則cm,cm,cm∵△PQC的面積為3cm2,∴,即,解得或(不合題意,舍去),∴當△PQC的面積為3cm2時,P、Q運動的時間是1秒.故答案為:1【考點】本題考查了一元二次方程應用——動點問題,三角形的面積,正確的理解題意是解題的關鍵.4、cm【解析】【分析】設較短的直角邊長是xcm,較長的就是(x+5)cm,根據(jù)面積是7cm,求出直角邊長,根據(jù)勾股定理求出斜邊長.【詳解】解:設這個直角三角形的較短直角邊長為xcm,則較長直角邊長為(x+5)cm,根據(jù)題意,得,所以,解得,,因為直角三角形的邊長為正數(shù),所以不符合題意,舍去,所以x=2,當x=2時,x+5=7,由勾股定理,得直角三角形的斜邊長為==cm.故答案為:cm.【考點】本題考查了勾股定理,一元二次方程的應用,關鍵是知道三角形面積公式以及直角三角形中勾股定理的應用.5、【解析】【分析】設每件襯衫降價x元,根據(jù)每件襯衫每降價1元,商場平均每天可多售出2件可得銷售量為,則每件襯衫的利潤為,根據(jù)銷售量乘以每件襯衫的利潤等于1200元,列出一元二次方程即可【詳解】解:設每件襯衫降價x元,根據(jù)題意得,故答案為:【考點】本題考查了一元二次方程的應用,根據(jù)題意列出一元二次方程是解題的關鍵.6、【解析】【分析】列舉出所有情況,看球的順序依次是“紅黃藍”的情況數(shù)占所有情況數(shù)的多少即可.【詳解】解:畫出樹形圖:共有27種情況,球的順序依次是“紅黃藍”的情況數(shù)有1種,所以概率為.故答案為:.【考點】考查用列樹狀圖的方法解決概率問題;得到球的順序依次是“紅黃藍”的情況數(shù)是解決本題的關鍵;用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.7、或##或【解析】【分析】連接,根據(jù)題意可得,當∠ADQ=90°時,分點在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據(jù)題意可得,當∠ADQ=90°時,點在上,且,,如圖,在中,,在中,故答案為:或.【考點】本題考查了旋轉的性質,勾股定理,直角三角形斜邊上中線的性質,確定點的位置是解題的關鍵.8、【解析】【分析】連接AC交BD于H,證明DCH≌DCF,得出DH的長度,再根據(jù)菱形的性質得出BD的長度.【詳解】解:如圖,連接AC交BD于點H,由菱形的性質得∠BDC=35,∠DCE=70,又∵∠MCE=15,∴∠DCF=55,∵DF⊥CM,∴∠CDF=35,又∵四邊形ABCD是菱形,∴BD平分∠ADC,∴∠HDC=35,在CDH和CDF中,∴CDH≌CDF(AAS),∴,∴DB=,故答案為.【考點】本題主要考查菱形的性質和全等三角形的判定,菱形的對角線互相平分是此題的關鍵知識點,得出∠HDC=∠FDC是這個題最關鍵的一點.四、解答題1、(1)m<;(2)該反比例函數(shù)的解析式為y=;(3)y1<y2.【解析】【分析】(1)由圖象在第一、三象限可得關于m的不等式,然后解不等式即可;(2)先根據(jù)平行四邊形的性質求出D點的坐標,然后將D點的坐標代入y=可求得1-2m的值即可;(3)利用反比例函數(shù)的增減性解答即可.【詳解】解:(1)∵y=的圖象在第一、三象限,∴1﹣2m>0,∴m<;(2)∵四邊形ABOD為平行四邊形,∴AD∥OB,AD=OB=2,∴D點坐標為(2,3),∴1﹣2m=2×3=6,∴該反比例函數(shù)的解析式為y=;(3)∵x1>x2>0,∴E,F(xiàn)兩點都在第一象限,又∵該反比例函數(shù)在每一個象限內,函數(shù)值y都隨x的增大而減小,∴y1<y2.【考點】本題考查了反比例函數(shù)的解析式、反比例函數(shù)的性質以及反比例函數(shù)與幾何的綜合,掌握反比例函數(shù)的定義及性質是解答本題的關鍵.2、(1)4;(2).【解析】【分析】由p點可以求得函數(shù)解析式,即可得k;由函數(shù)解析式中x的取值可以得y的取值.【詳解】解:∵點在反比例函數(shù)的圖象上,∴.∵,∴反比例函數(shù)在第一象限內單調遞減.∵當時,;當時,.∴.故當時,的取值范圍為:.【考點】本題考查了反比例函數(shù)的性質,熟悉掌握概念是解決本題的關鍵.3、(1);(2),理由見解析;(3)【解析】【分析】(1)由題意,,,當時,,,然后求出兩個正方形面積之和即可;(2)延長交于,根據(jù)正方形的性質得到AP=PC,PE=PB,∠APE=∠CPB=90°,在證的△APE≌△PBC,得到,在運用角的運算即可;(3)延長,交于點,可得四邊形EDBF的面積=四邊形HFBA-三角形DEH的面積-三角形ADB的面積,然后根據(jù)已知條件和正方形的性質即可解答.【詳解】解:(1)由題意,,,當時,,,(2)理由如下:延長交于,如下圖在正方形和正方形中,,,在和中,(全等三角形對應角相等),且,,,即.

(3)延長,交于點,,,,【考點】本題是四邊形綜合題目,考查了正方形面積的計算、三角形面積的計算、動點問題等知識;本題難度較大,綜合性強;但認真審題和靈活應用所學知識是解答本題的關鍵.4、(1)x1=1+,x2=1-;(2),.【解析】【分析】(1)用配方法求解即可;(2)先移項,然后用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論