2020年六年級數(shù)學-六年級數(shù)學易錯綜合訓練題_第1頁
2020年六年級數(shù)學-六年級數(shù)學易錯綜合訓練題_第2頁
2020年六年級數(shù)學-六年級數(shù)學易錯綜合訓練題_第3頁
2020年六年級數(shù)學-六年級數(shù)學易錯綜合訓練題_第4頁
2020年六年級數(shù)學-六年級數(shù)學易錯綜合訓練題_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2020年六年級數(shù)學-六年級數(shù)學易錯綜合訓練題一、培優(yōu)題易錯題1.在一條東西走向的馬路旁,有青少年宮、學校、商場、醫(yī)院四家公共場所.已知青少年宮在學校東300m處.商場在學校西200m處,醫(yī)院在學校東500m處.若將馬路近似地看做一條直線,以學校為原點,向東方向為正方向,用1個單位長度表示100m.(1)在數(shù)軸上表示出四家公共場所的位置.(2)列式計算青少年宮與商場之間的距離.【答案】(1)解:如圖所示:(2)解:由題意可得:300-(-200)=500或︱-200-300︱=500.答:青少年宮與商場之間的距離是500m【解析】【分析】(1)根據(jù)題意畫出學校為原點的數(shù)軸,在數(shù)軸上表示出四家公共場所的位置;(2)根據(jù)題意青少年宮與商場之間的距離是300-(-200),再根據(jù)減去一個數(shù)等于加上這個數(shù)的相反數(shù),求出青少年宮與商場之間的距離.2.規(guī)定兩數(shù)a,b之間的一種運算,記作(a,b):如果,那么(a,b)=c.例如:因為23=8,所以(2,8)=3.(1)根據(jù)上述規(guī)定,填空:(3,27)=________,(5,1)=________,(2,)=________.(2)小明在研究這種運算時發(fā)現(xiàn)一個現(xiàn)象:(3n,4n)=(3,4)小明給出了如下的證明:設(3n,4n)=x,則(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n,4n)=(3,4).請你嘗試運用這種方法證明下面這個等式:(3,4)+(3,5)=(3,20)【答案】(1)3;0;-2(2)解:設(3,4)=x,(3,5)=y,則,=5,∴,∴(3,20)=x+y,∴(3,4)+(3,5)=(3,20)【解析】(1)∵33=27,50=1,2-2=

,∴(3,27)=3,(5,1)=0,(2,)=-2.故答案依次為:3,0,-2【分析】根據(jù)新定義的運算得到冪的運算規(guī)律,由冪的運算規(guī)律得到相等的等式.3.如果,那么我們規(guī)定.例如:因為,所以.(1)根據(jù)上述規(guī)定,填空:________,________,________.(2)若記,,.求證:.【答案】(1)3;0;-2(2)解:依題意則∵∴【解析】【解答】解:(1)(3,27)=3,(4,1)=0,(2,0.25)=-2,故答案為:3;0;-2【分析】根據(jù)新定義的算法計算出根指數(shù)即可;由新定義的算法,得到同底數(shù)冪的乘法,底數(shù)不變,指數(shù)相加;證明出結(jié)論.4.數(shù)軸上有、、三點,分別表示有理數(shù)、、,動點從出發(fā),以每秒個單位的速度向右移動,當點運動到點時運動停止,設點移動時間為秒.(1)用含的代數(shù)式表示點對應的數(shù):________;(2)當點運動到點時,點從點出發(fā),以每秒個單位的速度向點運動,點到達點后,再立即以同樣的速度返回點.①用含的代數(shù)式表示點在由到過程中對應的數(shù):________

;②當t=________

時,動點P、Q到達同一位置(即相遇);③當PQ=3時,求t的值.________

【答案】(1)(2)2t-58;當時,t=32;當時,t=;t=3,29,35,,【解析】(1)點所對應的數(shù)為:(2)①②點從運動到點所花的時間為秒,點從運動到點所花的時間為秒當時,:,:,解之得當時,:,:,解之得【分析】(1)向右移動,左邊的數(shù)加上移動的距離就得移動后的數(shù);(2)需分類討論,16≤t≤39和39≤t≤46兩類分別計算.5.古希臘著名的畢達哥拉斯學派把1,3,6,10,…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16,…這樣的數(shù)稱為“正方形數(shù)”.(1)第5個“三角形數(shù)”是________,第n個“三角形數(shù)”是________,第5個“正方形數(shù)”是________,第n個“正方形數(shù)”是________.(2)除“1”以外,請再寫一個既是“三角形數(shù)”,又是“正方形數(shù)”的數(shù)________.(3)經(jīng)探究我們發(fā)現(xiàn):任何一個大于1的“正方形數(shù)”都可以看做兩個相鄰“三角形數(shù)”之和.例如:①4=1+3;②9=3+6;③16=6+10;④________;⑤________;…請寫出上面第4個和第5個等式.(4)在(3)中,請?zhí)骄縩2=________+________?!敬鸢浮浚?)15;;25;n2(2)36(3)25=10+15;36=15+21(4)2n;1【解析】【解答】解:(1)15,,25,n2;(2)1+2+3+4+5+6+7+8=36,62=36,所以36是三角形數(shù),也是正方形數(shù)。(3)25=10+15,36=15+21;(4),∵右邊===n2+2n+1=(n+1)2=左邊,∴原等式成立.故答案為15,,25,n2;25=10+15,36=15+21.【分析】(1)由“三角形數(shù)”得意義可得規(guī)律:第n個數(shù)為,把n=5代入計算即可求解;根據(jù)“正方形數(shù)”的意義可得:第n個數(shù)為,把n=5代入計算即可求解;(2)通過計算可知,36既是三角形數(shù),也是正方形數(shù);(3)由題意可得④25=10+15,⑤36=15+21;(4)由(3)中的計算可得:;,,。6.十字交叉法的證明過程:設甲、乙兩瓶溶液的質(zhì)量分別為和,濃度分別為和(),將兩瓶溶液混合后所得的溶液濃度為,求證:.【答案】證明:甲溶液中溶質(zhì)的質(zhì)量為

,乙溶液中的溶質(zhì)質(zhì)量為

,則混和溶液中的溶質(zhì)質(zhì)量為

,所以混合溶液的濃度為

,所以

,即

,

,可見

。【解析】【分析】溶液的濃度=溶質(zhì)的質(zhì)量÷溶液的質(zhì)量,溶質(zhì)的質(zhì)量=溶液質(zhì)量×濃度。根據(jù)計算方法分別表示出兩個容器中溶質(zhì)的質(zhì)量和混合后的濃度,得到等式后用十字交叉法證明這個等式即可。7.有甲、乙、丙三個容器,容量為毫升.甲容器有濃度為的鹽水毫升;乙容器中有清水毫升;丙容器中有濃度為的鹽水毫升.先把甲、丙兩容器中的鹽水各一半倒入乙容器攪勻后,再把乙容器中的鹽水毫升倒入甲容器,毫升倒入丙容器.這時甲、乙、丙容器中鹽水的濃度各是多少?【答案】解:列表如下:

甲乙濃度溶液濃度溶液開始第一次第二次

丙濃度溶液開始第一次第二次答:這時甲容器鹽水濃度是27.5%,乙容器中濃度為15%,丙容器中濃度為17.5%?!窘馕觥俊痉治觥吭谧鲇嘘P濃度的應用題時,為了弄清楚溶質(zhì)質(zhì)量、溶液質(zhì)量的變化,尤其是變化多次的,常用列表的方法,使它們之間的關系一目了然。濃度=鹽的質(zhì)量÷鹽水質(zhì)量×100%,鹽的質(zhì)量=鹽水質(zhì)量×濃度。8.一項工程,甲獨做天完成,甲天的工作量,乙要天完成.兩隊合做天后由乙隊獨做,還要幾天才能完成?【答案】解:乙的工作效率:,==(天)答:還要天才能完成?!窘馕觥俊痉治觥坑眉椎墓ぷ餍食?再除以4即可求出乙的工作效率,用總工作量減去兩隊合作2天的工作量即可求出還剩的工作量,還剩的工作量由乙來做,用剩下的工作量除以乙的工作效率即可求出還需要的時間。9.一項挖土方工程,如果甲隊單獨做,16天可以完成,乙隊單獨做要20天能完成.現(xiàn)在兩隊同時施工,工作效率提高20%.當工程完成時,突然遇到了地下水,影響了施工進度,使得每天少挖了47.25方土,結(jié)果共用了10天完成工程.問整工程要挖多少方土?【答案】解:工作效率和:,遇到地下水前的天數(shù):(天),遇到地下水后工作的天數(shù):10-(天),遇到地下水后的工作效率:,47.25÷()=1100(方)答:整工程要挖1100方土?!窘馕觥俊痉治觥坑迷瓉淼墓ぷ餍屎统耍?+20%)求出提高后的工作效率和,用原來完成的工作量除以工作效率和求出遇到地下水前挖的時間,進而求出遇到地下水后挖的時間。用遇到地下水后的工作量除以工作時間求出后來的工作效率。根據(jù)分數(shù)除法的意義,用每天少挖的土方數(shù)除以前后合做的工作效率的差即可求出整工程挖的土方數(shù)。10.一批工人到甲、乙兩個工地進行清理工作,甲工地的工作量是乙工地的工作量的倍.上午去甲工地的人數(shù)是去乙工地人數(shù)的倍,下午這批工人中有的人去甲工地.其他工人到乙工地.到傍晚時,甲工地的工作已做完,乙工地的工作還需名工人再做天,那么這批工人有多少人?【答案】解:設這批工人有12x人。上午去甲工地的人數(shù):12x÷(3+1)×3=9x(人),去乙工地的人數(shù):12x-9x=3x(人);下午去甲工地的人數(shù):12x×=7x(人),去乙工地的人數(shù):12x-7x=5x(人);甲工地:(9x+7x)÷2=8x(人),乙工地:(3x+5x)÷2=4x(人);假設甲工地的工作量是3份,那么乙工地的工作量是2份,8x人一整天完成3份,4x人一整天完成份,乙工地還剩下:(份),(人),即8x=24,x=3,12×3=36(人)。答:這批工人有36人?!窘馕觥俊?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論