黑龍江省密山市中考數(shù)學達標測試(精練)附答案詳解_第1頁
黑龍江省密山市中考數(shù)學達標測試(精練)附答案詳解_第2頁
黑龍江省密山市中考數(shù)學達標測試(精練)附答案詳解_第3頁
黑龍江省密山市中考數(shù)學達標測試(精練)附答案詳解_第4頁
黑龍江省密山市中考數(shù)學達標測試(精練)附答案詳解_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省密山市中考數(shù)學達標測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、下表中列出的是一個二次函數(shù)的自變量x與函數(shù)y的幾組對應值:…-2013……6-4-6-4…下列各選項中,正確的是A.這個函數(shù)的圖象開口向下B.這個函數(shù)的圖象與x軸無交點C.這個函數(shù)的最小值小于-6D.當時,y的值隨x值的增大而增大2、已知關于x的一元二次方程標有兩個不相等的實數(shù)根,則實數(shù)k的取值范圍是()A. B.C.且 D.3、下面四個立體圖形中,從正面看是三角形的是()A. B. C. D.4、等邊三角形、等腰三角形、矩形、菱形中既是軸對稱圖形,又是中心對稱圖形的個數(shù)是()A.2個 B.3個 C.4個 D.5個5、把7個同樣大小的正方體形狀的積木堆放在桌子上,從正面和左面看到的形狀圖都是如圖所示的同樣的圖形,則其從上面看到的形狀圖不可能是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、下表中列出的是一個二次函數(shù)的自變量與函數(shù)的幾組對應值:…013……6…下列各選項中,正確的是(

)A.函數(shù)圖象的開口向下 B.當時,的值隨的增大而增大C.函數(shù)的圖象與軸無交點 D.這個函數(shù)的最小值小于2、下列方程中,是一元二次方程的是(

)A. B. C. D.3、如圖,二次函敗y=ax2+bx+c(a、b、c為常數(shù),且a≠0)的圖象與x軸的交點的橫坐標分別為﹣1、3,則下列結論中正確的有()A.abc<0 B.2a+b=0 C.3a+2c>0 D.對于任意x均有ax2﹣a+bx﹣b≥04、下列命題中不正確的命題有(

)A.方程kx2-x-2=0是一元二次方程 B.x=1與方程x2=1是同解方程C.方程x2=x與方程x=1是同解方程 D.由(x+1)(x-1)=3可得x+1=3或x-1=35、如圖,PA、PB是的切線,切點分別為A、B,BC是的直徑,PO交于E點,連接AB交PO于F,連接CE交AB于D點.下列結論正確的是(

)A.CE平分∠ACB B. C.E是△PAB的內心 D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、菱形的一條對角線長為8,其邊長是方程x2-8x+15=0的一個根,則該菱形的面積為________.2、如果點與點B關于原點對稱,那么點B的坐標是______.3、將點繞x軸上的點G順時針旋轉90°后得到點,當點恰好落在以坐標原點O為圓心,2為半徑的圓上時,點G的坐標為________.4、要利用一面很長的圍墻和100米長的隔離欄建三個如圖所示的矩形羊圈,若計劃建成的三個羊圈總面積為400平方米,則羊圈的邊長AB為多少米?設AB=x米,根據題意可列出方程的為_________.5、若二次函數(shù)的頂點在x軸上,則__________.四、簡答題(2小題,每小題10分,共計20分)1、根據下列條件,求二次函數(shù)的解析式.(1)圖象經過(0,1),(1,﹣2),(2,3)三點;(2)圖象的頂點(2,3),且經過點(3,1);2、頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經過點C,交x軸于E(4,0).(1)求出拋物線的解析式;(2)如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設點M的橫坐標為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關系式,并求S的最大值;(3)點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應點F恰好落在y軸上時,請直接寫出點P的坐標.五、解答題(4小題,每小題10分,共計40分)1、如圖,四邊形ABCD是正方形.△ABE是等邊三角形,M為對角線BD(不含B,D點)上任意一點,將線段BM繞點B逆時針旋轉60°得到BN,連接EN,AM、CM.請判斷線段AM和線段EN的數(shù)量關系,并說明理由.2、解方程:(1)x2-x-2=0;(2)3x(x-2)=2-x.3、如圖,已知點在上,點在外,求作一個圓,使它經過點,并且與相切于點.(要求寫出作法,不要求證明)4、解關于y的方程:by2﹣1=y(tǒng)2+2.-參考答案-一、單選題1、C【解析】【分析】利用表中的數(shù)據,求得二次函數(shù)的解析式,再配成頂點式,根據二次函數(shù)的性質逐一分析即可判斷.【詳解】解:設二次函數(shù)的解析式為,依題意得:,解得:,∴二次函數(shù)的解析式為=,∵,∴這個函數(shù)的圖象開口向上,故A選項不符合題意;∵,∴這個函數(shù)的圖象與x軸有兩個不同的交點,故B選項不符合題意;∵,∴當時,這個函數(shù)有最小值,故C選項符合題意;∵這個函數(shù)的圖象的頂點坐標為(,),∴當時,y的值隨x值的增大而增大,故D選項不符合題意;故選:C.【考點】本題主要考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的性質,利用二次函數(shù)的性質解答是解題關鍵.2、C【解析】【分析】由一元二次方程定義得出二次項系數(shù)k≠0;由方程有兩個不相等的實數(shù)根,得出“△>0”,解這兩個不等式即可得到k的取值范圍.【詳解】解:由題可得:,解得:且;故選:C.【考點】本題考查了一元二次方程的定義和根的判別式,涉及到了解不等式等內容,解決本題的關鍵是能讀懂題意并牢記一元二次方程的概念和根的判別式的內容,能正確求出不等式(組)的解集等,本題對學生的計算能力有一定的要求.3、C【分析】找到從正面看所得到的圖形為三角形即可.【詳解】解:A、主視圖為正方形,不符合題意;B、主視圖為圓,不符合題意;C、主視圖為三角形,符合題意;D、主視圖為長方形,不符合題意.故選:C.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.4、A【分析】根據軸對稱圖形與中心對稱圖形的概念進行判斷.【詳解】解:矩形,菱形既是軸對稱圖形,也是中心對稱圖形,符合題意;等邊三角形、等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;共2個既是軸對稱圖形又是中心對稱圖形.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.(1)如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.(2)如果一個圖形繞某一點旋轉180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.5、C【分析】利用俯視圖,寫出符合題意的小正方體的個數(shù),即可判斷.【詳解】A、當7個小正方體如圖分布時,符合題意,本選項不符合題意.B、當7個小正方體如圖分布時,符合題意,本選項不符合題意.C、沒有符合題意的幾何圖形,本選項符合題意.D、當7個小正方體如圖分布時,符合題意,本選項不符合題意.故選:C.【點睛】此題考查了從不同的方向觀察物體和幾何體,鍛煉了學生的空間想象力和抽象思維能力.二、多選題1、BD【解析】【分析】根據拋物線經過點(0,-4),(3,-4)可得拋物線對稱軸為直線,由拋物線經過點(-2,6)可得拋物線開口向上,進而求解.【詳解】解:∵拋物線經過點(0,-4),(3,-4),∴拋物線對稱軸為直線,∵拋物線經過點(-2,6),∴當x<時,y隨x增大而減小,∴拋物線開口向上,且跟x軸有交點,故A,C錯誤,不符合題意;∴x>時,y隨x增大而增大,故B正確,符合題意;由對稱性可知,在處取得最小值,且最小值小于-6.故D正確,符合題意.故選:BD.【考點】本題考查二次函數(shù)的圖象與性質,解題關鍵是掌握二次函數(shù)與方程的關系.2、ABC【解析】【分析】根據一元二次方程的定義逐個判斷即可.【詳解】解:A、是一元二次方程,故本選項符合題意;B、是一元二次方程,故本選項符合題意;C、是一元二次方程,故本選項符合題意;D、方程,整理得:,是一元一次方程,不是一元二次方程,故本選項不符合題意;故選:【考點】本題考查了一元二次方程的定義,能熟記一元二次方程的定義的內容是解此題的關鍵,注意:只含有一個未知數(shù),并且所含未知數(shù)的項的次數(shù)最高是2的整式.3、BD【解析】【分析】由拋物線開口方向得到a>0,利用拋物線與x軸的交點問題和拋物線的對稱性得到拋物線的對稱軸為直線x=1,即-=1,所以b=-2a<0,利用拋物線與y軸的交點位置得到c<0,則可對A進行判斷;利用b=-2a可對B進行判斷;由于x=-1時,y=0,所以a-b+c=0,則c=-3a,3a+2c=-3a<0,于是可對C進行判斷;根據二次函數(shù)性質,x=1時,y的值最小,所以a+b+c≤ax2+bx+c,于是可對D進行判斷.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線與x軸的交點的坐標分別為(-1,0),(3,0),∴拋物線的對稱軸為直線x=1,即-=1,∴b=-2a<0,∵拋物線與y軸的交點在x軸下方,∴c<0,∴abc>0,所以A錯誤;∵b=-2a,∴2a+b=0,所以B正確;∵x=-1時,y=0,∴a-b+c=0,即a+2a+c=0,∴c=-3a,∴3a+2c=3a-6a=-3a<0,所以C錯誤;∵x=1時,y的值最小,∴對于任意x,a+b+c≤ax2+bx+c,即ax2-a+bx-b≥0,所以D正確.故選:BD.【考點】本題考查了二次函數(shù)與不等式(組):函數(shù)值y與某個數(shù)值m之間的不等關系,一般要轉化成關于x的不等式,解不等式求得自變量x的取值范圍;利用兩個函數(shù)圖象在直角坐標系中的上下位置關系求自變量的取值范圍,可作圖利用交點直觀求解,也可把兩個函數(shù)解析式列成不等式求解.4、ABCD【解析】【分析】根據方程、方程的解的有關定義以及解方程等知識點逐項判斷即可.【詳解】解:A.方程kx2?x?2=0當k≠0時才是一元二次方程,故錯誤;B.x=1與方程x2=1不是同解方程,故錯誤;C.方程x2=x與方程x=1不是同解方程,故錯誤;D.由(x+1)(x?1)=3可得x=±2,故錯誤.故選:ABCD.【考點】本題主要考查了一元二次方程的定義、解一元二次方程、同解方程等知識點,掌握解一元二次方程的方法是解答本題的關鍵.5、ACD【解析】【分析】連接OA,BE,根據PA、PB是⊙O的切線,可得PA=PB,OA=OB,可得OP是AB的垂直平分線,根據垂徑定理,進而可以判斷A;根據OB=OC,AF=BF,可得OF是三角形BAC的中位線,進而即可判斷D;證明∠PBE=∠EBA,∠APE=∠BPE,即可判斷C;根據AC∥OE,可得△CDA∽△EDF,進而可以判斷B.【詳解】如圖,連接OA,BE,∵PA、PB是⊙O的切線,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分線,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正確;∵BC是⊙O的直徑,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正確;∵PB是⊙O的切線,∴∠PBE+∠EBC=90°,∵BC是⊙O的直徑,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的內心;故C正確;∵AC∥OE,∴△CDA∽△EDF.故B錯誤;∴結論正確的是A,C,D.故選:ACD.【考點】此題考查了圓周角定理、切線的性質、三角形中位線定理、及勾股定理的知識,解答本題的關鍵是熟練掌握切線的性質及圓周角定理,注意各個知識點之間的融會貫通.三、填空題1、24【解析】【分析】利用因式分解法解方程得到x1=3,x2=5,再根據菱形的性質得到菱形的邊長為5,利用勾股定理計算出菱形的另一條對角線長,然后根據菱形的面積公式計算.【詳解】解:x2-8x+15=0,(x-3)(x-5)=0,x-3=0或x-5=0,∴x1=3,x2=5,∵菱形一條對角線長為8,∴菱形的邊長為5,∵菱形的另一條對角線長=2×=6,∴菱形的面積=×6×8=24.故答案為:24.【考點】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.也考查了菱形的性質.2、【分析】關于原點對稱的點坐標特征為:橫坐標、縱坐標都互為相反數(shù);進而求出點B坐標.【詳解】解:由題意知點B橫坐標為;縱坐標為;故答案為:.【點睛】本題考查了關于原點對稱的點的坐標知識.解題的關鍵在于熟練記憶關于原點對稱的點坐標中相對應的坐標互為相反數(shù).3、或【分析】設點G的坐標為,過點A作軸交于點M,過點作軸交于點N,由全等三角形求出點坐標,由點在2為半徑的圓上,根據勾股定理即可求出點G的坐標.【詳解】設點G的坐標為,過點A作軸交于點M,過點作軸交于點N,如圖所示:∵,∴,,∵點A繞點G順時針旋轉90°后得到點,∴,,∴,∵軸,軸,∴,∴,∴,在與中,,∴,∴,,∴,∴,在中,由勾股定理得:,解得:或,∴或.故答案為:,.【點睛】本題考查旋轉的性質、全等三角形的判定與性質以及勾股定理,掌握相關知識之間的應用是解題的關鍵.4、x(100-4x)=400【解析】【分析】由題意,得BC的長為(100-4x)米,根據矩形面積列方程即可.【詳解】解:設AB為x米,則BC的長為(100-4x)米由題意,得x(100-4x)=400故答案為:x(100-4x)=400.【考點】本題主要考查了一元二次方程的實際問題,解決問題的關鍵是通過圖形找到對應關系量,根據等量關系式列方程.5、-2或【解析】【分析】根據二次函數(shù)一般式的頂點坐標公式表示出頂點,再根據頂點在x軸上,建立等量關系求解即可.【詳解】解:的頂點坐標為:∵頂點在x軸上∴解得:故答案為:或【考點】本題考查二次函數(shù)一般式的頂點坐標,掌握二次函數(shù)一般式的頂點坐標公式是解題關鍵.四、簡答題1、(1)y=4x2﹣7x+1;(2)y=﹣2(x﹣2)2+3.【解析】【分析】(1)先設出拋物線的解析式為y=ax2+bx+c,再將點(0,1),(1,?2),(2,3)代入解析式中,即可求得拋物線的解析式;(2)由于已知拋物線的頂點坐標,則可設頂點式y(tǒng)=a(x?2)2+3,然后把(3,1)代入求出a的值即可.【詳解】解:(1)設出拋物線的解析式為y=ax2+bx+c,將(0,1),(1,﹣2),(2,3)代入解析式,得:,解得:,∴拋物線解析式為:y=4x2﹣7x+1;(2)設拋物線解析式為y=a(x﹣2)2+3,把(3,1)代入得:a(3﹣2)2+3=1,解得a=﹣2,所以拋物線解析式為y=﹣2(x﹣2)2+3.【考點】本題考查了待定系數(shù)法求二次函數(shù)的解析式:一般地,當已知拋物線上三點時,常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當已知拋物線的頂點或對稱軸時,常設其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設其解析式為交點式來求解.2、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當x=時,S有最大值,最大值為;(3)存在,點P的坐標為(4,0)或(,0).【解析】【分析】(1)將點E代入直線解析式中,可求出點C的坐標,將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標,設直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設點P的坐標,則點G的坐標可表示,點H的坐標可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設直線BD的解析式為y=kx+b,代入點B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點M的坐標為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當x=時,S有最大值,最大值為.(3)存在,如圖所示,設點P的坐標為(t,0),則點G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應點為點F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當t2﹣t=t時,解得t1=0(舍),t2=4,此時點P(4,0).當t2﹣t=﹣t時,解得t1=0(舍),t2=,此時點P(,0).綜上,點P的坐標為(4,0)或(,0).【考點】此題考查了待定系數(shù)法求函數(shù)解析式,點坐標轉換為線段長度,幾何圖形與二次函數(shù)結合的問題,最后一問推出CG=HG為解題關鍵.五、解答題1、AM=EN,理由見解析【分析】根據旋轉性質和等邊三角形的性質可證得∠ABM=∠EBN,BM=BN,AB=BE,根據全等三角形的判定證明△ABM≌△EBN即可得出結論.【詳解】解:AM=E

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論