滬科版9年級下冊期末測試卷(考點精練)附答案詳解_第1頁
滬科版9年級下冊期末測試卷(考點精練)附答案詳解_第2頁
滬科版9年級下冊期末測試卷(考點精練)附答案詳解_第3頁
滬科版9年級下冊期末測試卷(考點精練)附答案詳解_第4頁
滬科版9年級下冊期末測試卷(考點精練)附答案詳解_第5頁
已閱讀5頁,還剩33頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列圖形中,可以看作是中心對稱圖形的是()A. B.C. D.2、如圖,是的直徑,弦,垂足為,若,則()A.5 B.8 C.9 D.103、如圖,在中,,,將繞點C逆時針旋轉(zhuǎn)90°得到,則的度數(shù)為()A.105° B.120° C.135° D.150°4、下列關(guān)于隨機事件的概率描述正確的是()A.拋擲一枚質(zhì)地均勻的硬幣出現(xiàn)“正面朝上”的概率為0.5,所以拋擲1000次就一定有500次“正面朝上”B.某種彩票的中獎率為5%,說明買100張彩票有5張會中獎C.隨機事件發(fā)生的概率大于或等于0,小于或等于1D.在相同條件下可以通過大量重復(fù)實驗,用一個隨機事件的頻率去估計概率5、在中,,,給出條件:①;②;③外接圓半徑為4.請在給出的3個條件中選取一個,使得BC的長唯一.可以選取的是()A.① B.② C.③ D.①或③6、把7個同樣大小的正方體形狀的積木堆放在桌子上,從正面和左面看到的形狀圖都是如圖所示的同樣的圖形,則其從上面看到的形狀圖不可能是()A. B. C. D.7、如圖,PA,PB是⊙O的切線,A,B為切點,PA=4,則PB的長度為()A.3 B.4 C.5 D.68、如圖,與的兩邊分別相切,其中OA邊與相切于點P.若,,則OC的長為()A.8 B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、在同一平面上,外有一點P到圓上的最大距離是8cm,最小距離為2cm,則的半徑為______cm.2、數(shù)學(xué)興趣活動課上,小方將等腰的底邊BC與直線l重合,問:(1)如圖(1)已知,,點P在BC邊所在的直線l上移動,小方發(fā)現(xiàn)AP的最小值是______;(2)如圖(2)在直角中,,,,點D是CB邊上的動點,連接AD,將線段AD順時針旋轉(zhuǎn)60°,得到線段AP,連接CP,線段CP的最小值是______.3、在菱形ABCD中,AB=6,E為AB的中點,連結(jié)AC,DE交于點F,連結(jié)BF.記∠ABC=α(0°<α<180°).(1)當(dāng)α=60°時,則AF的長是_____;(2)當(dāng)α在變化過程中,BF的取值范圍是_____.4、將點繞x軸上的點G順時針旋轉(zhuǎn)90°后得到點,當(dāng)點恰好落在以坐標原點O為圓心,2為半徑的圓上時,點G的坐標為________.5、邊長相等、各內(nèi)角均為120°的六邊形ABCDEF在直角坐標系內(nèi)的位置如圖所示,,點B在原點,把六邊形ABCDEF沿x軸正半軸繞頂點按順時針方向,從點B開始逐次連續(xù)旋轉(zhuǎn),每次旋轉(zhuǎn)60°,經(jīng)過2021次旋轉(zhuǎn)之后,點B的坐標是_____________.6、已知60°的圓心角所對的弧長是3.14厘米,則它所在圓的周長是______厘米.7、如果點與點B關(guān)于原點對稱,那么點B的坐標是______.三、解答題(7小題,每小題0分,共計0分)1、如圖,AB是⊙O的直徑,點C是⊙O上一點,連接BC,半徑OD弦BC.(1)求證:弧AD=弧CD;(2)連接AC、BD相交于點F,AC與OD相交于點E,連接CD,若⊙O的半徑為5,BC=6,求CD和EF的長.2、對于平面直角坐標系xOy中的圖形M和點P給出如下定義:Q為圖形M上任意一點,若P,Q兩點間距離的最大值和最小值都存在,且最大值是最小值的2倍,則稱點P為圖形M的“二分點”.已知點N(3,0),A(1,0),,.(1)①在點A,B,C中,線段ON的“二分點”是______;②點D(a,0),若點C為線段OD的“二分點”,求a的取值范圍;(2)以點O為圓心,r為半徑畫圓,若線段AN上存在的“二分點”,直接寫出r的取值范圍.3、綜合與實踐“利用尺規(guī)作圖三等分一個任意角”曾是數(shù)學(xué)史上一大難題,之后被數(shù)學(xué)家證明是不可能完成的.人們根據(jù)實際需要,發(fā)明了一種簡易操作工具——三分角器.圖1是它的示意圖,其中與半圓的直徑在同一直線上,且的長度與半圓的半徑相等;與垂直于點,足夠長.使用方法如圖2所示,若要把三等分,只需適當(dāng)放置三分角器,使經(jīng)過的頂點,點落在邊上,半圓與另一邊恰好相切,切點為,則,就把三等分了.為了說明這一方法的正確性,需要對其進行證明.獨立思考:(1)如下給出了不完整的“已知”和“求證”,請補充完整.已知:如圖2,點,,,在同一直線上,,垂足為點,________,切半圓于.求證:________________.探究解決:(2)請完成證明過程.應(yīng)用實踐:(3)若半圓的直徑為,,求的長度.4、如圖1,在⊙O中,AC=BD,且AC⊥BD,垂足為點E.(1)求∠ABD的度數(shù);(2)圖2,連接OA,當(dāng)OA=2,∠OAB=15°,求BE的長度;(3)在(2)的條件下,求的長.5、如圖,是由一些大小相同的小正方體組合成的簡單幾同體,請在下面方格紙中分別畫出從它的左面和上面看到的形狀圖.6、如圖,在直角坐標平面內(nèi),已知點A的坐標(﹣2,0).(1)圖中點B的坐標是______;(2)點B關(guān)于原點對稱的點C的坐標是_____;點A關(guān)于y軸對稱的點D的坐標是______;(3)四邊形ABDC的面積是______;(4)在y軸上找一點F,使,那么點F的所有可能位置是______.7、如圖,在平面直角坐標系中,△ABC的頂點坐標分別為A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接寫出點B關(guān)于原點對稱的點B′的坐標:;(2)平移△ABC,使平移后點A的對應(yīng)點A1的坐標為(2,1),請畫出平移后的△A1B1C1;(3)畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°后得到的△A2B2C2.-參考答案-一、單選題1、C【分析】根據(jù)中心對稱圖形的定義進行逐一判斷即可.【詳解】解:A、不是中心對稱圖形,故此選項不符合題意;B、不是中心對稱圖形,故此選項不符合題意;C、是中心對稱圖形,故此選項符合題意;D、不是中心對稱圖形,故此選項不符合題意;故選C.【點睛】本題主要考查了中心對稱圖形的識別,解題的關(guān)鍵在于能夠熟練掌握中心對稱圖形的定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心.2、C【分析】連接,根據(jù)垂徑定理可得,設(shè)的半徑為,則,進而勾股定理列出方程求得半徑,進而求得【詳解】解:如圖,連接,∵是的直徑,弦,∴設(shè)的半徑為,則在中,,即解得即故選C【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.3、B【分析】由題意易得,然后根據(jù)三角形外角的性質(zhì)可求解.【詳解】解:由旋轉(zhuǎn)的性質(zhì)可得:,∴;故選B.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì)是解題的關(guān)鍵.4、D【分析】根據(jù)隨機事件、必然事件以及不可能事件的定義即可作出判斷.【詳解】解:概率反映的是隨機性的規(guī)律,但每次試驗出現(xiàn)的結(jié)果具有不確定,故選項A、B錯誤;隨機事件發(fā)生的概率大于0,小于1,概率等于1的是必然事件,概率等于0的是不可能事件,故選項C錯誤;在相同條件下可以通過大量重復(fù)實驗,用一個隨機事件的頻率去估計概率,故選項D正確;故選:D.【點睛】本題考查了隨機事件、必然事件以及不可能事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、B【分析】畫出圖形,作,交BE于點D.根據(jù)等腰直角三角形的性質(zhì)和勾股定理可求出AD的長,再由AD和AC的長作比較即可判斷①②;由前面所求的AD的長和AB的長,結(jié)合該三角形外接圓的半徑長,即可判斷該外接圓的圓心可在AB上方,也可在AB下方,其與AE的交點即為C點,為兩點不唯一,可判斷其不符合題意.【詳解】如圖,,,點C在射線上.作,交BE于點D.∵,∴為等腰直角三角形,∴,∴不存在的三角形ABC,故①不符合題意;∵,,AC=8,而AC>6,∴存在的唯一三角形ABC,如圖,點C即是.∴,使得BC的長唯一成立,故②符合題意;∵,,∴存在兩個點C使的外接圓的半徑等于4,兩個外接圓圓心分別在AB的上、下兩側(cè),如圖,點C和即為使的外接圓的半徑等于4的點.故③不符合題意.故選B.【點睛】本題考查等腰直角三角形的判定和性質(zhì),勾股定理,三角形外接圓的性質(zhì).利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.6、C【分析】利用俯視圖,寫出符合題意的小正方體的個數(shù),即可判斷.【詳解】A、當(dāng)7個小正方體如圖分布時,符合題意,本選項不符合題意.B、當(dāng)7個小正方體如圖分布時,符合題意,本選項不符合題意.C、沒有符合題意的幾何圖形,本選項符合題意.D、當(dāng)7個小正方體如圖分布時,符合題意,本選項不符合題意.故選:C.【點睛】此題考查了從不同的方向觀察物體和幾何體,鍛煉了學(xué)生的空間想象力和抽象思維能力.7、B【分析】由切線的性質(zhì)可推出,.再根據(jù)直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點,∴,,∴在和中,,∴,∴.故選:B【點睛】本題考查切線的性質(zhì),三角形全等的判定和性質(zhì).熟練掌握切線的性質(zhì)是解答本題的關(guān)鍵.8、C【分析】如圖所示,連接CP,由切線的性質(zhì)和切線長定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據(jù)勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點睛】本題主要考查了切線的性質(zhì),切線長定理,等腰直角三角形的性質(zhì)與判定,勾股定理,熟知切線長定理是解題的關(guān)鍵.二、填空題1、5或3【分析】分點P在圓內(nèi)或圓外進行討論.【詳解】解:①當(dāng)點P在圓內(nèi)時,⊙O的直徑長為8+2=10(cm),半徑為5cm;②當(dāng)點P在圓外時,⊙O的直徑長為8-2=6(cm),半徑為3cm;綜上所述:⊙O的半徑長為5cm或3cm.故答案為:5或3.【點睛】本題考查了點與圓的位置關(guān)系:點的位置可以確定該點到圓心距離與半徑的關(guān)系,反過來已知點到圓心距離與半徑的關(guān)系可以確定該點與圓的位置關(guān)系.2、105【分析】(1)如圖,作AH⊥BC于H.根據(jù)垂線段最短,求出AH即可解決問題.(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC時,KD的值最小,求出KD的最小值即可解決問題.【詳解】解:如圖作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根據(jù)垂線段最短可知,當(dāng)AP與AH重合時,PA的值最小,最小值為10.∴AP的最小值是10;(2)如圖,在AB上取一點K,使得AK=AC,連接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC時,KD的值最小,∵,是等邊三角形,∴,∴PC的最小值為5.【點睛】本題屬于幾何變換綜合題,考查了等腰三角形的性質(zhì),垂線段最短,全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題.3、2【分析】(1)證明是等邊三角形,,進而即可求得;(2)過點作,交于點,以為圓心長度為半徑作半圓,交的延長延長線于點,證明在半圓上,進而即可求得范圍.【詳解】(1)如圖,四邊形是菱形,是等邊三角形是的中點即故答案為:2(2)如圖,過點作,交于點,以為圓心長度為半徑作半圓,交的延長延長線于點,四邊形是菱形,在以為圓心長度為半徑的圓上,又∠ABC=α(0°<α<180°)在半圓上,最小值為最大值為故答案為:【點睛】本題考查了相似三角形的性質(zhì)與判定,點與圓的位置關(guān)系求最值問題,掌握相似三角形的性質(zhì)與判定是解題的關(guān)鍵.4、或【分析】設(shè)點G的坐標為,過點A作軸交于點M,過點作軸交于點N,由全等三角形求出點坐標,由點在2為半徑的圓上,根據(jù)勾股定理即可求出點G的坐標.【詳解】設(shè)點G的坐標為,過點A作軸交于點M,過點作軸交于點N,如圖所示:∵,∴,,∵點A繞點G順時針旋轉(zhuǎn)90°后得到點,∴,,∴,∵軸,軸,∴,∴,∴,在與中,,∴,∴,,∴,∴,在中,由勾股定理得:,解得:或,∴或.故答案為:,.【點睛】本題考查旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)以及勾股定理,掌握相關(guān)知識之間的應(yīng)用是解題的關(guān)鍵.5、【分析】根據(jù)旋轉(zhuǎn)找出規(guī)律后再確定坐標.【詳解】∵正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,∴每6次翻轉(zhuǎn)為一個循環(huán)組循環(huán),∵,∴經(jīng)過2021次翻轉(zhuǎn)為第337循環(huán)組的第5次翻轉(zhuǎn),點B在開始時點C的位置,∵,∴,∴翻轉(zhuǎn)前進的距離為:,如圖,過點B作BG⊥x于G,則∠BAG=60°,∴,,∴,∴點B的坐標為.故答案為:.【點睛】題考查旋轉(zhuǎn)的性質(zhì)與正多邊形,由題意找出規(guī)律是解題的關(guān)鍵.6、18.84【分析】先根據(jù)弧長公式求得πr,然后再運用圓的周長公式解答即可.【詳解】解:設(shè)圓弧所在圓的半徑為厘米,則,解得,則它所在圓的周長為(厘米),故答案為:.【點睛】本題主要考查了弧長公式、圓的周長公式等知識點,牢記弧長公式是解答本題的關(guān)鍵.7、【分析】關(guān)于原點對稱的點坐標特征為:橫坐標、縱坐標都互為相反數(shù);進而求出點B坐標.【詳解】解:由題意知點B橫坐標為;縱坐標為;故答案為:.【點睛】本題考查了關(guān)于原點對稱的點的坐標知識.解題的關(guān)鍵在于熟練記憶關(guān)于原點對稱的點坐標中相對應(yīng)的坐標互為相反數(shù).三、解答題1、(1)見解析;(2)CD=,EF=1.【分析】(1)連接OC,根據(jù)圓的性質(zhì),得到OB=OC;根據(jù)等腰三角形的性質(zhì),得到;根據(jù)平行線的性質(zhì),得到;在同圓和等圓中,根據(jù)相等的圓心解所對的弧等即得證.(2)根據(jù)直徑所對的圓周角是直角求出∠ACB=90°,根據(jù)平行線的性質(zhì)求得∠AEO=∠ACB=90°,利用勾股定理求出AC=8,根據(jù)垂徑定理求得EC=AE=4,根據(jù)中位線定理求出OE,在Rt△CDE中,根據(jù)勾股定理求出CD,因為,所以△EDF∽△BCF,最后根據(jù)似的性質(zhì),列方程求解即可.【詳解】(1)解:連結(jié)OC.∵∴∠1=∠B∠2=∠C∵OB=OC∴∠B=∠C∴∠1=∠2∴弧AD=弧CD(2)∵AB是的直徑∴∠ACB=90°∵∴∠AEO=∠ACB=90°Rt△ABC中,∠ACB=90°,∵BC=6,AB=10∴AC=8∵半徑OD⊥AC于E∴EC=AE=4OE=∴ED=2由勾股定理得,CD=∵∴△EDF∽△CBF∴設(shè)EF=x,則FC=4-x∴EF=1,經(jīng)檢驗符合題意.【點睛】本題考查了圓的綜合題,圓的有關(guān)性質(zhì):圓的半徑相等;同圓或等圓中,相等的圓心角所對的弧等;直徑所對的圓周角是直角;垂徑定理;平行線的性質(zhì),勾股定理,三角形中位線定理,三角形相似的判定和性質(zhì)等知識,正確理解圓的相關(guān)性質(zhì)是解題的關(guān)鍵.2、(1)①B和C;②或;(2)或【分析】(1)①分別找出點A,B,C到線段ON的最小值和最大值,是否滿足“二分點”定義即可;②對a的取值分情況討論:、、和,根據(jù)“二分點”的定義可求解;(2)設(shè)線段AN上存在的“二分點”為,對的取值分情況討論、,、,和,根據(jù)“二分點”的定義可求解.【詳解】(1)①∵點A在ON上,故最小值為0,不符合題意,點B到ON的最小值為,最大值為,∴點B是線段ON的“二分點”,點C到ON的最小值為1,最大值為,∴點C是線段ON的“二分點”,故答案為:B和C;②若時,如圖所示:點C到OD的最小值為,最大值為,∵點C為線段OD的“二分點”,∴,解得:;若,如圖所示:點C到OD的最小值為1,最大值為,滿足題意;若時,如圖所示:點C到OD的最小值為1,最大值為,∵點C為線段OD的“二分點”,∴,解得:(舍);若時,如圖所示:點C到OD的最小值為,最大值為,∵點C為線段OD的“二分點”,∴,解得:或(舍),綜上所得:a的取值范圍為或;(2)如圖所示,設(shè)線段AN上存在的“二分點”為,當(dāng)時,最小值為:,最大值為:,∴,即,∵,∴∴;當(dāng),時,最小值為:,最大值為:,∴∴,即,∵,∴,∵,∴不存在;當(dāng),時,最小值為:,最大值為:,∴,即,∴,∵,∴不存在;當(dāng)時,最小值為:,最大值為:,∴,即,∴,∵,∴,綜上所述,r的取值范圍為或.【點睛】本題考查坐標上的兩點距離,解一元二次方程解不等式以及點到圓的距離求最值,根據(jù)題目所給條件,掌握“二分點”的定義是解題的關(guān)鍵.3、(1),,將三等分;(2)見解析;(3)【分析】(1)根據(jù)題意即可得;(2)先證明與全等,然后根據(jù)全等的性質(zhì)可得,再由圓的切線的性質(zhì)可得,可得三個角相等,即可證明結(jié)論;(3)連,延長與相交于點,由(2)結(jié)論可得,再由切線的性質(zhì),,然后利用勾股定理及線段間的數(shù)量關(guān)系可得,最后利用相似三角形的判定和性質(zhì)求解即可得.【詳解】解:(1),,將三等分,故答案為:;,將三等分,(2)證明:在與中,,,.,是的切線.、都是的切線,,,,將三等分.(3)如圖,連,延長與相交于點,由(2),知.是的切線,,,.∵半徑,∴由勾股定理得,在中,,,.∵,,,,即,.【點睛】題目主要考查全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),圓的切線的性質(zhì),勾股定理等,理解題意,結(jié)合圖形綜合運用這些知識點是解題關(guān)鍵.4、(1);(2);(3)【分析】(1)如圖,過作垂足分別為連接證明四邊形為正方形,可得證明可得答案;(2)先求解再結(jié)合(1)的結(jié)論可得答案;(3)如圖,連接先求解再證明再求解可得再利用弧長公式計算即可.【詳解】解:(1)如圖,過作垂足分別為連接四邊形為矩形,由勾股定理可得:而四邊形為正方形,而(2)如圖,過作垂足分別為由(1)得:四邊形為正方形,OA=2,∠OAB=15°,(3)如圖,連接【點睛】本題考查的是勾股定理的應(yīng)用,等腰三角形的判定與性質(zhì),矩形,正方形的判定與性質(zhì),垂徑定理的應(yīng)用,弧長的計算,掌握以上知識并靈活運用是解本題的關(guān)鍵.5、圖見解析.【分析】根據(jù)左視圖和俯視圖的畫法即可得.【詳解】解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論