2026屆北京理工大附中高三數(shù)學(xué)第一學(xué)期期末聯(lián)考試題_第1頁
2026屆北京理工大附中高三數(shù)學(xué)第一學(xué)期期末聯(lián)考試題_第2頁
2026屆北京理工大附中高三數(shù)學(xué)第一學(xué)期期末聯(lián)考試題_第3頁
2026屆北京理工大附中高三數(shù)學(xué)第一學(xué)期期末聯(lián)考試題_第4頁
2026屆北京理工大附中高三數(shù)學(xué)第一學(xué)期期末聯(lián)考試題_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2026屆北京理工大附中高三數(shù)學(xué)第一學(xué)期期末聯(lián)考試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則()A. B. C. D.2.已知正項(xiàng)數(shù)列滿足:,設(shè),當(dāng)最小時,的值為()A. B. C. D.3.已知函數(shù),則函數(shù)的圖象大致為()A. B.C. D.4.已知集合,,則A. B. C. D.5.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)()A. B. C. D.6.是邊長為的等邊三角形,、分別為、的中點(diǎn),沿把折起,使點(diǎn)翻折到點(diǎn)的位置,連接、,當(dāng)四棱錐的外接球的表面積最小時,四棱錐的體積為()A. B. C. D.7.A. B. C. D.8.寧波古圣王陽明的《傳習(xí)錄》專門講過易經(jīng)八卦圖,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“—”表示一根陽線,“——”表示一根陰線).從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為()A. B. C. D.9.若復(fù)數(shù)滿足,則()A. B. C. D.10.已知,則()A. B. C. D.11.雙曲線的右焦點(diǎn)為,過點(diǎn)且與軸垂直的直線交兩漸近線于兩點(diǎn),與雙曲線的其中一個交點(diǎn)為,若,且,則該雙曲線的離心率為()A. B. C. D.12.在中,為邊上的中點(diǎn),且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知角的終邊過點(diǎn),則______.14.已知向量,滿足,,,則向量在的夾角為______.15.點(diǎn)P是△ABC所在平面內(nèi)一點(diǎn)且在△ABC內(nèi)任取一點(diǎn),則此點(diǎn)取自△PBC內(nèi)的概率是____16.已知函數(shù)為偶函數(shù),則_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且,(,且)(1)求數(shù)列的通項(xiàng)公式;(2)證明:當(dāng)時,18.(12分)已知函數(shù).(1)當(dāng)時,解關(guān)于x的不等式;(2)當(dāng)時,若對任意實(shí)數(shù),都成立,求實(shí)數(shù)的取值范圍.19.(12分)如圖,在三棱柱中,是邊長為2的等邊三角形,,,.(1)證明:平面平面;(2),分別是,的中點(diǎn),是線段上的動點(diǎn),若二面角的平面角的大小為,試確定點(diǎn)的位置.20.(12分)如圖,在四棱錐中,,,.(1)證明:平面;(2)若,,為線段上一點(diǎn),且,求直線與平面所成角的正弦值.21.(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點(diǎn),平面平面,.(1)求證:平面;(2)求證:平面.22.(10分)在直角坐標(biāo)系xOy中,直線的參數(shù)方程為(t為參數(shù)).以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.(1)寫出圓C的直角坐標(biāo)方程;(2)設(shè)直線l與圓C交于A,B兩點(diǎn),,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

利用誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡求解即可.【詳解】,本題正確選項(xiàng):本題考查誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.2.B【解析】

由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當(dāng)且僅當(dāng)時取得最小值,此時.故選:B本題主要考查了數(shù)列中的最值問題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運(yùn)算求解能力.3.A【解析】

用排除法,通過函數(shù)圖像的性質(zhì)逐個選項(xiàng)進(jìn)行判斷,找出不符合函數(shù)解析式的圖像,最后剩下即為此函數(shù)的圖像.【詳解】設(shè),由于,排除B選項(xiàng);由于,所以,排除C選項(xiàng);由于當(dāng)時,,排除D選項(xiàng).故A選項(xiàng)正確.故選:A本題考查了函數(shù)圖像的性質(zhì),屬于中檔題.4.C【解析】分析:根據(jù)集合可直接求解.詳解:,,故選C點(diǎn)睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類問題時要先將參與運(yùn)算的集合化為最簡形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進(jìn)行運(yùn)算.5.C【解析】

根據(jù)準(zhǔn)線的方程寫出拋物線的標(biāo)準(zhǔn)方程,再對照系數(shù)求解即可.【詳解】因?yàn)闇?zhǔn)線方程為,所以拋物線方程為,所以,即.故選:C本題考查拋物線與準(zhǔn)線的方程.屬于基礎(chǔ)題.6.D【解析】

首先由題意得,當(dāng)梯形的外接圓圓心為四棱錐的外接球球心時,外接球的半徑最小,通過圖形發(fā)現(xiàn),的中點(diǎn)即為梯形的外接圓圓心,也即四棱錐的外接球球心,則可得到,進(jìn)而可根據(jù)四棱錐的體積公式求出體積.【詳解】如圖,四邊形為等腰梯形,則其必有外接圓,設(shè)為梯形的外接圓圓心,當(dāng)也為四棱錐的外接球球心時,外接球的半徑最小,也就使得外接球的表面積最小,過作的垂線交于點(diǎn),交于點(diǎn),連接,點(diǎn)必在上,、分別為、的中點(diǎn),則必有,,即為直角三角形.對于等腰梯形,如圖:因?yàn)槭堑冗吶切?,、、分別為、、的中點(diǎn),必有,所以點(diǎn)為等腰梯形的外接圓圓心,即點(diǎn)與點(diǎn)重合,如圖,,所以四棱錐底面的高為,.故選:D.本題考查四棱錐的外接球及體積問題,關(guān)鍵是要找到外接球球心的位置,這個是一個難點(diǎn),考查了學(xué)生空間想象能力和分析能力,是一道難度較大的題目.7.A【解析】

直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.【詳解】本題正確選項(xiàng):本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計(jì)算題.8.B【解析】

根據(jù)古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數(shù),再找出這兩卦的六根線中恰有四根陰線的基本事件數(shù),代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數(shù)種,這兩卦的六根線中恰有四根陰線的基本事件數(shù)有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B本題主要考查古典概型的概率,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.9.C【解析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡,再由復(fù)數(shù)模的計(jì)算公式求解.【詳解】解:由,得,∴.故選C.本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)模的求法,是基礎(chǔ)題.10.C【解析】

利用誘導(dǎo)公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.本題考查誘導(dǎo)公式、倍角公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時注意三角函數(shù)的符號.11.D【解析】

根據(jù)已知得本題首先求出直線與雙曲線漸近線的交點(diǎn),再利用,求出點(diǎn),因?yàn)辄c(diǎn)在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因?yàn)椋纯傻玫?,故選:D.本題主要考查的是雙曲線的簡單幾何性質(zhì)和向量的坐標(biāo)運(yùn)算,離心率問題關(guān)鍵尋求關(guān)于,,的方程或不等式,由此計(jì)算雙曲線的離心率或范圍,屬于中檔題.12.A【解析】

由為邊上的中點(diǎn),表示出,然后用向量模的計(jì)算公式求模.【詳解】解:為邊上的中點(diǎn),,故選:A在三角形中,考查中點(diǎn)向量公式和向量模的求法,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意利用任意角的三角函數(shù)的定義,兩角和差正弦公式,求得的值.【詳解】解:∵角的終邊過點(diǎn),∴,,∴,故答案為:.本題主要考查任意角的三角函數(shù)的定義,兩角和差正弦公式,屬于基礎(chǔ)題.14.【解析】

把平方利用數(shù)量積的運(yùn)算化簡即得解.【詳解】因?yàn)?,,,所以,∴,∴,因?yàn)樗?故答案為:本題主要考查平面向量的數(shù)量積的運(yùn)算法則,考查向量的夾角的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平.15.【解析】

設(shè)是中點(diǎn),根據(jù)已知條件判斷出三點(diǎn)共線且是線段靠近的三等分點(diǎn),由此求得,結(jié)合幾何概型求得點(diǎn)取自三角形的概率.【詳解】設(shè)是中點(diǎn),因?yàn)?,所以,所以三點(diǎn)共線且點(diǎn)是線段靠近的三等分點(diǎn),故,所以此點(diǎn)取自內(nèi)的概率是.故答案為:本小題主要考查三點(diǎn)共線的向量表示,考查幾何概型概率計(jì)算,屬于基礎(chǔ)題.16.【解析】

根據(jù)偶函數(shù)的定義列方程,化簡求得的值.【詳解】由于為偶函數(shù),所以,即,即,即,即,即,即,即,所以.故答案為:本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù),考查運(yùn)算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)見證明【解析】

(1)由題意將遞推關(guān)系式整理為關(guān)于與的關(guān)系式,求得前n項(xiàng)和然后確定通項(xiàng)公式即可;(2)由題意結(jié)合通項(xiàng)公式的特征放縮之后裂項(xiàng)求和即可證得題中的不等式.【詳解】(1)由,得,即,所以數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,所以,即,當(dāng)時,,當(dāng)時,,也滿足上式,所以;(2)當(dāng)時,,所以給出與的遞推關(guān)系,求an,常用思路是:一是利用轉(zhuǎn)化為an的遞推關(guān)系,再求其通項(xiàng)公式;二是轉(zhuǎn)化為Sn的遞推關(guān)系,先求出Sn與n之間的關(guān)系,再求an.18.(1)(2)【解析】

(1)當(dāng)時,利用含有一個絕對值不等式的解法,求得不等式的解集.(2)對分成和兩類,利用零點(diǎn)分段法去絕對值,將表示為分段函數(shù)的形式,求得的最小值,進(jìn)而求得的取值范圍.【詳解】(1)當(dāng)時,由得由得解:,得∴當(dāng)時,關(guān)于的不等式的解集為(2)①當(dāng)時,,所以在上是減函數(shù),在是增函數(shù),所以,由題設(shè)得,解得.②當(dāng)時,同理求得.綜上所述,的取值范圍為.本小題主要考查含有一個絕對值不等式的求法,考查利用零點(diǎn)分段法解含有兩個絕對值的不等式,屬于中檔題.19.(1)證明見解析;(2)為線段上靠近點(diǎn)的四等分點(diǎn),且坐標(biāo)為【解析】

(1)先通過線面垂直的判定定理證明平面,再根據(jù)面面垂直的判定定理即可證明;(2)分析位置關(guān)系并建立空間直角坐標(biāo)系,根據(jù)二面角的余弦值與平面法向量夾角的余弦值之間的關(guān)系,即可計(jì)算出的坐標(biāo)從而位置可確定.【詳解】(1)證明:因?yàn)?,,,所以,?又因?yàn)椋?,所以,,所以平?因?yàn)槠矫?,所以平面平?(2)解:連接,因?yàn)?,是的中點(diǎn),所以.由(1)知,平面平面,所以平面.以為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則平面的一個法向量是,,,.設(shè),,,,代入上式得,,,所以.設(shè)平面的一個法向量為,,,由,得.令,得.因?yàn)槎娼堑钠矫娼堑拇笮?,所以,即,解?所以點(diǎn)為線段上靠近點(diǎn)的四等分點(diǎn),且坐標(biāo)為.本題考查面面垂直的證明以及利用向量法求解二面角有關(guān)的問題,難度一般.(1)證明面面垂直,可通過先證明線面垂直,再證明面面垂直;(2)二面角的余弦值不一定等于平面法向量夾角的余弦值,要注意結(jié)合圖形分析.20.(1)證明見解析(2)【解析】

(1)利用線段長度得到與間的垂直關(guān)系,再根據(jù)線面垂直的判定定理完成證明;(2)以、、為軸、軸、軸建立空間直角坐標(biāo)系,利用直線的方向向量與平面的法向量夾角的余弦值的絕對值等于線面角的正弦值,計(jì)算出結(jié)果.【詳解】(1)∵,,∴,∴,∵,平面,∴平面(2)由(1)知,,又為坐標(biāo)原點(diǎn),分別以、、為軸、軸、軸建立空間直角坐標(biāo)系,則,,,,,,,∵,∴,設(shè)是平面的一個法向量則,即,取得∴∴直線與平面所成的正弦值為本題考查線面垂直的證明以及用向量法求解線面角的正弦,難度一般.用向量方法求解線面角的正弦值時,注意直線方向向量與平面法向量夾角的余弦值的絕對值等于線面角的正弦值.21.(1)見解析;(2)見解析【解析】

(1)根據(jù),分別是,的中點(diǎn),即可證明,從而可證平面;(2)先根據(jù)為正三角形,且D是的中點(diǎn),證出,再根據(jù)平面平面,得到平面,從而得到,結(jié)合,即可得證.【詳解】(1)∵,分別是,的中點(diǎn)∴∵平面,平面∴平面.(2)∵為正三角形,且D是的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論