考點解析滬科版9年級下冊期末測試卷【必考】附答案詳解_第1頁
考點解析滬科版9年級下冊期末測試卷【必考】附答案詳解_第2頁
考點解析滬科版9年級下冊期末測試卷【必考】附答案詳解_第3頁
考點解析滬科版9年級下冊期末測試卷【必考】附答案詳解_第4頁
考點解析滬科版9年級下冊期末測試卷【必考】附答案詳解_第5頁
已閱讀5頁,還剩29頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、往直徑為78cm的圓柱形容器內裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為()A.36cm B.27cm C.24cm D.15cm2、如圖,與相切于點,連接交于點,點為優(yōu)弧上一點,連接,,若,的半徑,則的長為()A.4 B. C. D.13、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.4、如圖,點P是等邊三角形ABC內一點,且PA=3,PB=4,PC=5,則∠APB的度數是().A.90° B.100° C.120° D.150°5、如圖,圓形螺帽的內接正六邊形的面積為24cm2,則圓形螺帽的半徑是()A.1cm B.2cm C.2cm D.4cm6、等邊三角形、等腰三角形、矩形、菱形中既是軸對稱圖形,又是中心對稱圖形的個數是()A.2個 B.3個 C.4個 D.5個7、如圖,中,,O是AB邊上一點,與AC、BC都相切,若,,則的半徑為()A.1 B.2 C. D.8、在圓內接四邊形ABCD中,∠A、∠B、∠C的度數之比為2:4:7,則∠B的度數為()A.140° B.100° C.80° D.40°第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在中,,,.繞點B順時針方向旋轉45°得到,點A經過的路徑為弧,點C經過的路徑為弧,則圖中陰影部分的面積為______.(結果保留)2、如圖,在中,,是內的一個動點,滿足.若,,則長的最小值為_______.3、已知一個扇形的半徑是1,圓心角是120°,則這個扇形的面積是___________.4、把一副普通撲克牌中的13張黑桃牌洗勻后正面朝下放在桌子上,從中隨機抽取一張,則抽出的牌上的數小于5的概率為_____.5、在一個布袋中,裝有除顏色外其它完全相同的2個紅球和2個白球,如果從中隨機摸出兩個球,那么摸到的兩個紅球的概率是________.6、如圖,點A,B,C在⊙O上,四邊形OABC是平行四邊形,若對角線AC=2,則的長為_____.7、在一個暗箱里放入除顏色外其它都相同的1個紅球和11個黃球,攪拌均勻后隨機任取一球,取到紅球的概率是_____.三、解答題(7小題,每小題0分,共計0分)1、解題與遐想.如圖,Rt△ABC的內切圓與斜邊AB相切于點D,AD=4,BD=5.求Rt△ABC的面積.王小明:這道題算出來面積剛好是20,太湊巧了吧.剛好是4×5=20,有種白算的感覺…趙麗華:我把4和5換成m、n再算一遍,△ABC的面積總是m?n!確實非常神奇了…數學劉老師:大家想一想,既然結果如此簡單到極致,不計算能不能得到呢?比如,拼圖?霍佳:劉老師,我在想另一個東西,這個圖能不能尺規(guī)畫出來啊感覺圖都定了.我怎么想不出來呢?計算驗證(1)通過計算求出Rt△ABC的面積.拼圖演繹(2)將Rt△ABC分割放入矩形中(左圖),通過拼圖能直接“看”出“20”請在圖中畫出拼圖后的4個直角三角形甲、乙、丙、丁的位置,作必要標注并簡要說明.尺規(guī)作圖(3)尺規(guī)作圖:如圖,點D在線段AB上,以AB為斜邊求作一個Rt△ABC,使它的內切圓與斜邊AB相切于點D.(保留作圖的痕跡,寫出必要的文字說明)2、如圖,已知在中,,D、E是BC邊上的點,將繞點A旋轉,得到,連接.(1)當時,時,求證:;(2)當時,與有怎樣的數量關系?請寫出,并說明理由.(3)在(2)的結論下,當,BD與DE滿足怎樣的數量關系時,是等腰直角三角形?(直接寫出結論,不必證明)3、如圖,AB是的直徑,CD是的一條弦,且于點E.(1)求證:;(2)若,,求的半徑.4、某商家銷售一批盲盒,每一個看上去無差別的盲盒內含有A,B,C,D四種玩具中的一種,抽到玩具B的有關統(tǒng)計量如表所示:抽盲盒總數50010001500200025003000頻數130273414566695843頻率0.2600.2730.2760.2830.2780.281(1)估計從這批盲盒中任意抽取一個是玩具B的概率是;(結果保留小數點后兩位)(2)小明從分別裝有A,B,C,D四種玩具的四個盲盒中隨機抽取兩個,請利用畫樹狀圖或列表的方法,求抽到的兩個玩具恰為玩具A和玩具C的概率.5、如圖,以四邊形的對角線為直徑作圓,圓心為,點、在上,過點作的延長線于點,已知平分.(1)求證:是切線;(2)若,,求的半徑和的長.6、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(與A、B不重合),連接CD,將線段CD繞點C按逆時針方向旋轉90°得到線段CE,連接DE、BE(1)求證:△ACD≌△BCE;(2)若BE=5,DE=13,求AB的長7、在平面直角坐標系xOy中,給出如下定義:若點P在圖形M上,點Q在圖形N上,稱線段PQ長度的最小值為圖形M,N的“近距離”,記為d(M,N),特別地,若圖形M,N有公共點,規(guī)定d(M,N)=0.已知:如圖,點A(,0),B(0,).(1)如果⊙O的半徑為2,那么d(A,⊙O)=,d(B,⊙O)=.(2)如果⊙O的半徑為r,且d(⊙O,線段AB)=0,求r的取值范圍;(3)如果C(m,0)是x軸上的動點,⊙C的半徑為1,使d(⊙C,線段AB)<1,直接寫出m的取值范圍.-參考答案-一、單選題1、C【分析】連接,過點作于點,交于點,先由垂徑定理求出的長,再根據勾股定理求出的長,進而得出的長即可.【詳解】解:連接,過點作于點,交于點,如圖所示:則,的直徑為,,在中,,,即水的最大深度為,故選:C.【點睛】本題考查了垂徑定理、勾股定理等知識,解題的關鍵是根據題意作出輔助線,構造出直角三角形是解答此題的關鍵.2、B【分析】連接OB,根據切線性質得∠ABO=90°,再根據圓周角定理求得∠AOB=60°,進而求得∠A=30°,然后根據含30°角的直角三角形的性質解答即可.【詳解】解:連接OB,∵AB與相切于點B,∴∠ABO=90°,∵∠BDC=30°,∴∠AOB=2∠BDC=60°,在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,∴OA=2OB=4,∴,故選:B.【點睛】本題考查切線的性質、圓周角定理、直角三角形的銳角互余、含30°角的直角三角形性質、勾股定理,熟練掌握相關知識的聯(lián)系與運用是解答的關鍵.3、C【詳解】解:選項A是軸對稱圖形,不是中心對稱圖形,故A不符合題意;選項B不是軸對稱圖形,是中心對稱圖形,故B不符合題意;選項C既是軸對稱圖形,也是中心對稱圖形,故C符合題意;選項D是軸對稱圖形,不是中心對稱圖形,故D不符合題意;故選C【點睛】本題考查的是軸對稱圖形的識別,中心對稱圖形的識別,掌握“軸對稱圖形與中心對稱圖形的定義”是解本題的關鍵,軸對稱圖形:把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合;中心對稱圖形:把一個圖形繞某點旋轉后能與自身重合.4、D【分析】將繞點逆時針旋轉得,根據旋轉的性質得,,,則為等邊三角形,得到,,在中,,,,根據勾股定理的逆定理可得到為直角三角形,且,即可得到的度數.【詳解】解:為等邊三角形,,可將繞點逆時針旋轉得,如圖,連接,,,,為等邊三角形,,,在中,,,,,為直角三角形,且,.故選:D.【點睛】本題考查了旋轉的性質、等邊三角形,解題的關鍵是掌握旋轉前后的兩個圖形全等,對應點與旋轉中心的連線段的夾角等于旋轉角,對應點到旋轉中心的距離相等.5、D【分析】根據圓內接正六邊形的性質可得△AOB是正三角形,由面積公式可求出半徑.【詳解】解:如圖,由圓內接正六邊形的性質可得△AOB是正三角形,過作于設半徑為r,即OA=OB=AB=r,OM=OA?sin∠OAB=,∵圓O的內接正六邊形的面積為(cm2),∴△AOB的面積為(cm2),即,,解得r=4,故選:D.【點睛】本題考查正多邊形和圓,作邊心距轉化為直角三角形的問題是解決問題的關鍵.6、A【分析】根據軸對稱圖形與中心對稱圖形的概念進行判斷.【詳解】解:矩形,菱形既是軸對稱圖形,也是中心對稱圖形,符合題意;等邊三角形、等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;共2個既是軸對稱圖形又是中心對稱圖形.故選:A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.(1)如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.(2)如果一個圖形繞某一點旋轉180°后能夠與自身重合,那么這個圖形就叫做中心對稱圖形,這個點叫做對稱中心.7、D【分析】作OD⊥AC于D,OE⊥BC于E,如圖,設⊙O的半徑為r,根據切線的性質得OD=OE=r,易得四邊形ODCE為正方形,則CD=OD=r,再證明△ADO∽△ACB,然后利用相似比得到,再根據比例的性質求出r即可.【詳解】解:作OD⊥AC于D,OE⊥BC于E,如圖,設⊙O的半徑為r,∵⊙O與AC、BC都相切,∴OD=OE=r,而∠C=90°,∴四邊形ODCE為正方形,∴CD=OD=r,∵OD∥BC,∴△ADO∽△ACB,∴∵AF=AC-r,BC=3,AC=4,代入可得,∴r=.故選:D.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了相似三角形的判定與性質.8、C【分析】,,,進而求解的值.【詳解】解:由題意知∵∴∴∵∴故選C.【點睛】本題考查了圓內接四邊形中對角互補.解題的關鍵在于根據角度之間的數量關系求解.二、填空題1、##【分析】設與AC相交于點D,過點D作,垂足為點E,根據勾股定理逆定理可得為直角三角形,根據三邊關系可得,根據題意及等角對等邊得出,在中,利用正弦函數可得,結合圖形,利用扇形面積公式及三角形面積公式求解即可得.【詳解】解:設與AC相交于點D,過點D作,垂足為點E,∵,,,∴,∴為直角三角形,∴,∵繞點B順時針方向旋轉45°得到,∴,∴,∴,在中,,∴,∴,∴,,,,,故答案為:.【點睛】題目主要考查勾股定理逆定理,旋轉的性質,等角對等邊的性質,正切函數,扇形面積等,理解題意,結合圖形,綜合運用這些知識點是解題關鍵.2、2【分析】取AC中點O,由勾股定理的逆定理可知∠ADC=90°,則點D在以O為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,由此求解即可.【詳解】解:如圖所示,取AC中點O,∵,即,∴∠ADC=90°,∴點D在以O為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,∵,,∠ACB=90°,∴,∴,∴,∴,故答案為:2.【點睛】本題主要考查了一點到圓上一點的最短距離,勾股定理的逆定理,勾股定理,解題的關鍵在于確定點D的運動軌跡.3、【分析】根據圓心角為的扇形面積是進行解答即可得.【詳解】解:這個扇形的面積.故答案是:.【點睛】本題考查了扇形的面積,解題的關鍵是掌握扇形的面積公式.4、【分析】抽出的牌的點數小于5有1,2,3,4共4個,總的樣本數目為13,由此可以容易知道事件抽出的牌的點數小于5的概率.【詳解】解:∵抽出的牌的點數小于5有1,2,3,4共4個,總的樣本數目為13,∴從中任意抽取一張,抽出的牌點數小于5的概率是:.故答案為:.【點睛】此題主要考查了概率的求法.用到的知識點為:概率=所求情況數與總情況數之比.5、【分析】畫樹狀圖,共有12個等可能的結果,摸到的兩個球顏色紅色的結果有2個,再由概率公式求解即可.【詳解】解:畫樹狀圖如圖:共有12個等可能的結果,摸到的兩個紅球的有2種結果,摸到的兩個紅球的概率是,故答案為:.【點睛】本題考查列表法或畫樹狀圖求概率,解題的關鍵是準確畫出樹狀圖或列出表格.6、【分析】連接OB,交AC于點D,根據有一組鄰邊相等的平行四邊形是菱形,可得四邊形OABC為菱形,根據菱形的性質可得:,,,根據等邊三角形的判定得出為等邊三角形,由此得出,在直角三角形中利用勾股定理即可確定圓的半徑,然后代入弧長公式求解即可.【詳解】解:如圖所示,連接OB,交AC于點D,∵四邊形OABC為平行四邊形,,∴四邊形OABC為菱形,∴,,,∵,∴為等邊三角形,∴,∴,在中,設,則,∴,即,解得:或(舍去),∴的長為:,故答案為:.【點睛】題目主要考查菱形的判定和性質,等邊三角形的判定和性質,勾股定理,弧長公式等,熟練掌握各個定理和公式是解題關鍵.7、【分析】由題意可知,共有12個球,取到每個球的機會均等,根據概率公式解題.【詳解】解:P(紅球)=故答案為:【點睛】本題考查簡單事件的概率,是基礎考點,掌握相關知識是解題關鍵.三、解答題1、(1)S△ABC=20;(2)見解析;(3)見解析.【分析】(1)設⊙O的半徑為r,由切線長定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,進而求得結果;(2)根據切線長定理可證明甲和乙兩個三角形全等,丙丁兩個三角形全等,故將甲乙圖形放在OE為邊的上方,將丙丁以OP為邊放在右側,圍成矩形的邊長是4和5;(3)可先計算∠AFB=135°,根據“定弦對定角”作F點的軌跡,根據切線性質,過點F作AB的垂線,再根據直徑所對的圓周角是90°,確定點C.【詳解】解:(1)如圖1,設⊙O的半徑為r,連接OE,OF,∵⊙O內切于△ABC,∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,∴∠OEC=∠OFC=∠C=90°,∴四邊形ECFO是矩形,∴CF=OE=r,CE=OF=r,∴AC=4+r,BC=5+r,在Rt△ABC中,由勾股定理得,(r+4)2+(r+5)2=92,∴r2+9r=20,∴S△ABC=====20;(2)如圖2,(3)設△ABC的內切圓記作⊙F,∴AF和BF平分∠BAC和∠ABC,FD⊥AB,∴∠BAF=∠CAB,∠ABF=,∴∠BAF+∠ABF=(∠BAC+∠ABC)==45°,∴∠AFB=135°,可以按以下步驟作圖(如圖3):①以BA為直徑作圓,作AB的垂直平分線交圓于點E,②以E為圓心,AE為半徑作圓,③過點D作AB的垂線,交圓于F,④連接EF并延長交圓于C,連接AC,BC,則△ABC就是求作的三角形.【點睛】本題考查三角形的內切圓性質、切線長定理、勾股定理、矩形的判定與性質、尺規(guī)作圖-作垂線,熟練掌握相關知識的聯(lián)系與運用是解答的關鍵.2、(1)見解析;(2)∠DAE=∠BAC,見解析;(3)DE=BD,見解析【分析】(1)根據旋轉的性質可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,從而得到∠DAE=∠D′AE,再利用“邊角邊”證明△ADE和△AD′E全等,根據全等三角形對應邊相等證明即可;(2)根據旋轉的性質可得AD=AD′,再利用“邊邊邊”證明△ADE和△AD′E全等,然后根據全等三角形對應角相等求出∠DAE=∠D′AE,然后求出∠BAD+∠CAE=∠DAE,從而得解;(3)求出∠D′CE=90°,然后根據等腰直角三角形斜邊等于直角邊的倍可得D′E=CD′,再根據旋轉的性質解答即可.【詳解】(1)證明:∵△ABD繞點A旋轉得到△ACD′,∴AD=AD′,∠CAD′=∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D′AE=∠CAD′+∠CAE=∠BAD+∠CAE=∠BAC?∠DAE=120°?60°=60°,∴∠DAE=∠D′AE,在△ADE和△AD′E中,,∴△ADE≌△AD′E(SAS),∴DE=D′E;(2)解:∠DAE=∠BAC.理由如下:在△ADE和△AD′E中,,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D′AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD′=45°,∴∠D′CE=45°+45°=90°,∵△D′EC是等腰直角三角形,∴D′E=CD′,由(2)DE=D′E,∵△ABD繞點A旋轉得到△ACD′,∴BD=C′D,∴DE=BD.【點睛】本題考查了幾何變換的綜合題,旋轉的性質,全等三角形的判定與性質,等腰直角三角形的性質,熟記旋轉變換只改變圖形的位置不改變圖形的形狀與大小找出三角形全等的條件是解題的關鍵.3、(1)見解析;(2)3【分析】(1)根據∠D=∠B,∠BCO=∠B,代換證明;(2)根據垂徑定理,得CE=,,利用勾股定理計算即可.【詳解】(1)證明:∵OC=OB,∴∠BCO=∠B;∵,∴∠B=∠D;∴∠BCO=∠D;(2)解:∵AB是⊙O的直徑,且CD⊥AB于點E,∴CE=CD,∵CD=,∴CE=,在Rt△OCE中,,∵OE=1,∴,∴;∴⊙O的半徑為3.【點睛】本題考查了圓周角定理,垂徑定理,勾股定理,結合圖形,熟練運用三個定理是解題的關鍵.4、(1)0.28;(2)【分析】(1)由表中數據可判斷頻率在0.28左右擺動,利用頻率估計概率可判斷任意抽取一個毛絨玩具是優(yōu)等品的概率為0.28;(2)先列表得出所有等可能結果,從中找到符合條件的結果數,再根據概率公式求解可得.(1)解:從這批盲盒中任意抽取一個是玩具B的概率是0.28,故答案為0.28.(2)列表為:ABCDA--BACADABAB--CBDBCACBC--DCDADBDCD--由上表可知,從四種玩具的四個盲盒中隨機抽取兩個共有12種等可能結果,其中恰為玩具A和玩具C的結果有2種,所以恰為玩具A和玩具C的概率P=.【點睛】本題考查了利用頻率估計概率及用列表法或樹狀圖法求概率,大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數與總情況數之比.5、(1)證明見解析(2)【分析】(1)連接OA,根據已知條件證明OA⊥AE即可解決問題;(2)取CD中點F,連接OF,根據垂徑定理可得OF⊥CD,所以四邊形AEFO是矩形,利用勾股定理即可求出結果.(1)證明:如圖,連接OA,∵AE⊥CD,∴∠DAE+∠ADE=90°.∵DA平分∠BDE,∴∠ADE=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠DAE+∠OAD=90°,∴OA⊥AE,∴AE是⊙O切線;(2)解:如圖,取CD中點F,連接OF,∴OF⊥CD于點F.∴四邊形AEFO是矩形,∵CD=6,∴DF=FC=3.在Rt△OFD中,OF=AE=4,∴,在Rt△AED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,∴,∴AD的長是.【點睛】本題考查了切線的判定與性質,垂徑定理,圓周角定理,勾股定理,解決本題的關鍵是掌握切線的判定與性質.6、(1)見解析;(2)17【分析】(1)由旋轉的性質可得CD=CE,∠DCE=90°=∠ACB,由“SAS”可證△ACD≌△BCE;(2)由∠ACB=90°,AC=BC,可得∠CAB=∠CBA=45°,再由△ACD≌△BCE,得到BE=AD=5,∠CB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論