版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,的半徑為6,將劣弧沿弦翻折,恰好經(jīng)過圓心O,點C為優(yōu)弧上的一個動點,則面積的最大值是()A. B. C. D.2、的邊經(jīng)過圓心,與圓相切于點,若,則的大小等于()A. B. C. D.3、把6張大小、厚度、顏色相同的卡片上分別畫上線段、等邊三角形、正方形、長方形、圓、拋物線.在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是()A. B. C. D.4、下面是由一些完全相同的小立方塊搭成的幾何體從三個方向看到的形狀圖.搭成這個幾何體所用的小立方塊的個數(shù)是()A.個 B.個 C.個 D.個5、如圖,△ABC外接于⊙O,∠A=30°,BC=3,則⊙O的半徑長為()A.3 B. C. D.6、如圖,ABCD是正方形,△CDE繞點C逆時針方向旋轉(zhuǎn)90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形7、如圖,是△ABC的外接圓,已知,則的大小為()A.55° B.60° C.65° D.75°8、在中,,cm,cm.以C為圓心,r為半徑的與直線AB相切.則r的取值正確的是()A.2cm B.2.4cm C.3cm D.3.5cm第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,AB為⊙O的弦,∠AOB=90°,AB=a,則OA=______,O點到AB的距離=______.2、從,0,1,2這四個數(shù)中任取一個數(shù),作為關(guān)于x的方程中a的值,則該方程有實數(shù)根的概率為_________.3、如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為2,∠D=110°,則的長為__.4、如圖,在中,,是內(nèi)的一個動點,滿足.若,,則長的最小值為_______.5、皮影戲是一種以獸皮或紙板做成的人物剪影,在燈光照射下用隔亮布進行表演的民間戲?。硌菡咴谀缓蟛倏v剪影、演唱,或配以音樂,具有濃厚的鄉(xiāng)土氣息.“皮影戲”中的皮影是______(填寫“平行投影”或“中心投影”)6、如圖,與x軸交于、兩點,,點P是y軸上的一個動點,PD切于點D,則△ABD的面積的最大值是________;線段PD的最小值是________.7、如圖,PA,PB是的切線,切點分別為A,B.若,,則AB的長為______.三、解答題(7小題,每小題0分,共計0分)1、在平面直角坐標系xOy中,對于點P,O,Q給出如下定義:若OQ<PO<PQ且PO≤2,我們稱點P是線段OQ的“潛力點”已知點O(0,0),Q(1,0)(1)在P1(0,-1),P2(,),P3(-1,1)中是線段OQ的“潛力點”是_____________;(2)若點P在直線y=x上,且為線段OQ的“潛力點”,求點P橫坐標的取值范圍;(3)直線y=2x+b與x軸交于點M,與y軸交于點N,當線段MN上存在線段OQ的“潛力點”時,直接寫出b的取值范圍2、一個不透明的口袋中有四個分別標號為1,2,3,4的完全相同的小球,從中隨機摸取兩個小球.(1)請列舉出所有可能結(jié)果;(2)求取出的兩個小球標號和等于5的概率.3、如圖,以四邊形的對角線為直徑作圓,圓心為,點、在上,過點作的延長線于點,已知平分.(1)求證:是切線;(2)若,,求的半徑和的長.4、如圖,AB是⊙O的直徑,點D,E在⊙O上,四邊形BDEO是平行四邊形,過點D作交AE的延長線于點C.(1)求證:CD是⊙O的切線.(2)若,求陰影部分的面積.5、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點G,且,過點C作的垂線交的延長線于點H.(1)判斷與⊙的位置關(guān)系并說明理由;(2)若,求弧的長.6、在等邊中,是邊上一動點,連接,將繞點順時針旋轉(zhuǎn)120°,得到,連接.(1)如圖1,當、、三點共線時,連接,若,求的長;(2)如圖2,取的中點,連接,猜想與存在的數(shù)量關(guān)系,并證明你的猜想;(3)如圖3,在(2)的條件下,連接、交于點.若,請直接寫出的值.7、如圖,是的弦,是上的一點,且,于點,交于點.若的半徑為6,求弦的長.-參考答案-一、單選題1、C【分析】如圖,過點C作CT⊥AB于點T,過點O作OH⊥AB于點H,交⊙O于點K,連接AO、AK,解直角三角形求出AB,求出CT的最大值,可得結(jié)論.【詳解】解:如圖,過點C作CT⊥AB于點T,過點O作OH⊥AB于點H,交⊙O于點K,連接AO、AK,由題意可得AB垂直平分線段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin60°=6×=3,∵OH⊥AB,∴AH=BH,∴AB=2AH=6,∵OC+OH?CT,∴CT?6+3=9,∴CT的最大值為9,∴△ABC的面積的最大值為=27,故選:C.【點睛】本題考查垂徑定理、三角函數(shù)、三角形的面積、垂線段最短等知識,解題的關(guān)鍵是求出CT的最大值,屬于中考常考題型.2、A【分析】連接,根據(jù)圓周角定理求出,根據(jù)切線的性質(zhì)得到,根據(jù)直角三角形的性質(zhì)計算,得到答案.【詳解】解:連接,,,與圓相切于點,,,故選:A.【點睛】本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點的半徑是解題的關(guān)鍵.3、D【分析】根據(jù)題意,判斷出中心對稱圖形的個數(shù),進而即可求得答案【詳解】解:∵線段、等邊三角形、正方形、長方形、圓、拋物線中,中心對稱圖形有:線段、正方形、長方形、圓,共4種,總數(shù)為6種∴在看不見圖形的條件下任意摸出1張,這張卡片上的圖形是中心對稱圖形的概率是故選D【點睛】本題考查了概率公式求概率,中心對稱圖形,掌握線段、等邊三角形、正方形、長方形、圓、拋物線的性質(zhì)是解題的關(guān)鍵.4、D【分析】從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).【詳解】解:綜合主視圖,俯視圖,左視圖,底層有5個正方體,第二層有1個正方體,所以搭成這個幾何體所用的小立方塊的個數(shù)是6,故選D.【點睛】考查學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查.如果掌握口訣“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”就更容易得到答案.5、A【分析】分析:連接OA、OB,根據(jù)圓周角定理,易知∠AOB=60°;因此△ABO是等邊三角形,即可求出⊙O的半徑.【詳解】解:連接BO,并延長交⊙O于D,連結(jié)DC,∵∠A=30°,∴∠D=∠A=30°,∵BD為直徑,∴∠BCD=90°,在Rt△BCD中,BC=3,∠D=30°,∴BD=2BC=6,∴OB=3.故選A.【點睛】本題考查了圓周角性質(zhì),利用同弧所對圓周角性質(zhì)與直徑所對圓周角性質(zhì),30°角所對直角三角形性質(zhì),掌握圓周角性質(zhì),利用同弧所對圓周角性質(zhì)與直徑所對圓周角性質(zhì),30°角所對直角三角形性質(zhì)是解題的關(guān)鍵.6、D【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)推出相等的邊CE=CF,旋轉(zhuǎn)角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點C逆時針方向旋轉(zhuǎn)90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì),掌握圖形旋轉(zhuǎn)前后的大小和形狀不變是解決問題的關(guān)鍵.7、C【分析】由OA=OB,,求出∠AOB=130°,根據(jù)圓周角定理求出的度數(shù).【詳解】解:∵OA=OB,,∴∠BAO=.∴∠AOB=130°.∴=∠AOB=65°.故選:C.【點睛】此題考查了同圓中半徑相等的性質(zhì),圓周角定理:同弧所對的圓周角等于圓心角的一半.8、B【分析】如圖所示,過C作CD⊥AB,交AB于點D,在直角三角形ABC中,由AC與BC的長,利用勾股定理求出AB的長,利用面積法求出CD的長,即為所求的r.【詳解】解:如圖所示,過C作CD⊥AB,交AB于點D,在Rt△ABC中,AC=3cm,BC=4cm,根據(jù)勾股定理得:AB==5(cm),∵S△ABC=BC?AC=AB?CD,∴×3×4=×10×CD,解得:CD=2.4,則r=2.4(cm).故選:B.【點睛】此題考查了切線的性質(zhì),勾股定理,以及三角形面積求法,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.二、填空題1、【分析】過O作OC垂直于弦AB,利用垂徑定理得到C為AB的中點,然后由OA=OB,且∠AOB為直角,得到三角形OAB為等腰直角三角形,由斜邊AB的長,利用勾股定理求出直角邊OA的長即可;再由C為AB的中點,由AB的長求出AC的長,在直角三角形OAC中,由OA及AC的長,利用勾股定理即可求出OC的長,即為O點到AB的距離.【詳解】解:過O作OC⊥AB,則有C為AB的中點,∵OA=OB,∠AOB=90°,AB=a,∴根據(jù)勾股定理得:OA2+OB2=AB,∴OA=,在Rt△AOC中,OA=,AC=AB=,根據(jù)勾股定理得:OC==.故答案為:;【點睛】此題考查了垂徑定理,等腰直角三角形的性質(zhì),以及勾股定理,在圓中遇到弦,常常過圓心作弦的垂線,根據(jù)近垂徑定理由垂直得中點,進而由弦長的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來解決問題.2、【分析】根據(jù)一元二次方程的定義,可得,根據(jù)一元二次方程的判別式的意義得到,可得,然后根據(jù)概率公式求解.【詳解】解:∵當且,一元二次方程有實數(shù)根∴且從,0,1,2這四個數(shù)中任取一個數(shù),符合條件的結(jié)果有所得方程有實數(shù)根的概率為故答案為:【點睛】本題考查了列舉法求概率,一元二次方程的定義,一元二次方程根的判別式,掌握以上知識是解題的關(guān)鍵.3、##【分析】連接OA、OC,先求出∠ABC的度數(shù),然后得到∠AOC,再由弧長公式即可求出答案.【詳解】解:連接OA、OC,如圖,∵四邊形ABCD是⊙O的內(nèi)接四邊形,∠D=110°,∴,∴,∴;故答案為:.【點睛】本題考查了弧長的計算以及圓周角定理,解答本題的關(guān)鍵是掌握弧長公式.4、2【分析】取AC中點O,由勾股定理的逆定理可知∠ADC=90°,則點D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,由此求解即可.【詳解】解:如圖所示,取AC中點O,∵,即,∴∠ADC=90°,∴點D在以O(shè)為圓心,以AC為直徑的圓上,作△ADC外接圓,連接BO,交圓O于,則長的最小值即為,∵,,∠ACB=90°,∴,∴,∴,∴,故答案為:2.【點睛】本題主要考查了一點到圓上一點的最短距離,勾股定理的逆定理,勾股定理,解題的關(guān)鍵在于確定點D的運動軌跡.5、中心投影【分析】根據(jù)平行投影和中心投影的定義解答即可.【詳解】解:“皮影戲”中的皮影是中心投影.故答案是中心投影.【點睛】本題主要考查了平行投影和中心投影,中心投影是指把光由一點向外散射形成的投影,平行投影是在一束平行光線照射下形成的投影.6、【分析】根據(jù)題中點的坐標可得圓的直徑,半徑為1,分析以AB定長為底,點D在圓上,高最大為圓的半徑,即可得出三角形最大的面積;連接AP,設(shè)點,根據(jù)切線的性質(zhì)及勾股定理可得,由其非負性即可得.【詳解】解:如圖所示:當點P到如圖位置時,的面積最大,∵、,∴圓的直徑,半徑為1,∴以AB定長為底,點D在圓上,高最大為圓的半徑,如圖所示:此時面積的最大值為:;如圖所示:連接AP,∵PD切于點D,∴,∴,設(shè)點,在中,,,∴,在中,,∴,則,當時,PD取得最小值,最小值為,故答案為:①;②.【點睛】題目主要考查切線的性質(zhì)及勾股定理的應(yīng)用,理解題意,作出相應(yīng)圖形求出解析式是解題關(guān)鍵.7、3【分析】由切線長定理和,可得為等邊三角形,則.【詳解】解:連接,如下圖:,分別為的切線,,為等腰三角形,,,為等邊三角形,,,.故答案為:3.【點睛】本題考查了等邊三角形的判定和切線長定理,解題的關(guān)鍵是作出相應(yīng)輔助線.三、解答題1、(1);(2);(3)或【分析】(1)分別計算出OQ、PO和PQ的長度,比較即可得出答案;(2)先判斷點P在以O(shè)為圓心,1為半徑的圓外且點P在線段OQ垂直平分線的左側(cè),結(jié)合PO≤2,點P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),可得點P在如圖所示的線段AB上(不包含點B),過作軸,過作軸,垂足分別為再根據(jù)圖形的性質(zhì)求解從而可得答案;(3)由(2)得:點P在以O(shè)為圓心,1為半徑的圓外且點P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點P在線段OQ垂直平分線的左側(cè),再分兩種情況討論:當時,當時,分別畫出兩種情況下的臨界直線再根據(jù)臨界直線經(jīng)過的特殊點求解的值,再確定范圍即可.【詳解】解:(1)O(0,0),Q(1,0),P1(0,-1),P2(,),P3(-1,1)不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點”,同理:所以不滿足OQ<PO<PQ且PO≤2,所以不是線段OQ的“潛力點”,同理:所以滿足:OQ<PO<PQ且PO≤2,所以是線段OQ的“潛力點”,故答案為:P3(2)∵點P為線段OQ的“潛力點”,∴OQ<PO<PQ且PO≤2,∵OQ<PO,∴點P在以O(shè)為圓心,1為半徑的圓外∵PO<PQ,∴點P在線段OQ垂直平分線的左側(cè),而的垂直平分線為:∵PO≤2,∴點P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi)又∵點P在直線y=x上,∴點P在如圖所示的線段AB上(不包含點B)過作軸,過作軸,垂足分別為由題意可知△BOC和△AOD是等腰三角形,∴∴-≤xp<-(3)由(2)得:點P在以O(shè)為圓心,1為半徑的圓外且點P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點P在線段OQ垂直平分線的左側(cè)當時,過時,即函數(shù)解析式為:此時則當與半徑為2的圓相切于時,則由而當時,如圖,同理可得:點P在以O(shè)為圓心,1為半徑的圓外且點P在以O(shè)為圓心,2為半徑的圓上或圓內(nèi),而PO<PQ,點P在線段OQ垂直平分線的左側(cè),同理:當過則直線為在直線上,此時當過時,則所以此時:綜上:的范圍為:1<b≤或<b<-1【點睛】本題考查的是新定義情境下的知識運用,圓的基本性質(zhì),圓的切線的性質(zhì),一次函數(shù)的綜合應(yīng)用,銳角三角函數(shù)的應(yīng)用,勾股定理的應(yīng)用,數(shù)形結(jié)合是解本題的關(guān)鍵.2、(1)見詳解;(2).【分析】(1)根據(jù)題意通過列出相應(yīng)的表格,即可得出所有可能結(jié)果;(2)由題意利用取出的兩個小球標號和等于5的結(jié)果數(shù)除以所有可能結(jié)果數(shù)即可得出答案.【詳解】解:(1)由題意列表得:12341---(2,1)(3,1)(4,1)2(1,2)---(3,2)(4,2)3(1,3)(2,3)---(4,3)4(1,4)(2,4)(3,4)---所有可能的結(jié)果有12種;(2)由(1)表格可知取出的兩個小球標號和等于5的結(jié)果有(1,4)、(2,3)、(3,2)、(4,1)共4種,而所有可能的結(jié)果有12種,所以取出的兩個小球標號和等于5的概率.【點睛】本題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.3、(1)證明見解析(2)【分析】(1)連接OA,根據(jù)已知條件證明OA⊥AE即可解決問題;(2)取CD中點F,連接OF,根據(jù)垂徑定理可得OF⊥CD,所以四邊形AEFO是矩形,利用勾股定理即可求出結(jié)果.(1)證明:如圖,連接OA,∵AE⊥CD,∴∠DAE+∠ADE=90°.∵DA平分∠BDE,∴∠ADE=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠DAE+∠OAD=90°,∴OA⊥AE,∴AE是⊙O切線;(2)解:如圖,取CD中點F,連接OF,∴OF⊥CD于點F.∴四邊形AEFO是矩形,∵CD=6,∴DF=FC=3.在Rt△OFD中,OF=AE=4,∴,在Rt△AED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,∴,∴AD的長是.【點睛】本題考查了切線的判定與性質(zhì),垂徑定理,圓周角定理,勾股定理,解決本題的關(guān)鍵是掌握切線的判定與性質(zhì).4、(1)見詳解;(2)【分析】(1)連接OD,由題意易得,則有△ODB是等邊三角形,然后可得△AEO也為等邊三角形,進而可得OD∥AC,最后問題可求證;(2)由(1)易得AE=ED,∠CED=∠OBD=60°,然后可得圓O的半徑,進而可得扇形OED和△OED的面積,則有弓形ED的面積,最后問題可求解.【詳解】(1)證明:連接OD,如圖所示:∵四邊形BDEO是平行四邊形,∴,∴△ODB是等邊三角形,∴∠OBD=∠BOD=60°,∴∠AOE=∠OBD=60°,∵OE=OA,∴△AEO也為等邊三角形,∴∠EAO=∠DOB=60°,∴AE∥OD,∴∠ODC+∠C=180°,∵CD⊥AE,∴∠C=90°,∴∠ODC=90°,∵OD是圓O的半徑,∴CD是⊙O的切線.(2)解:由(1)得∠EAO=∠AOE=∠OBD=∠BOD=60°,ED∥AB,∴∠EAO=∠CED=60°,∵∠AOE+∠EOD+∠BOD=180°,∴∠EOD=60°,∴△DEO為等邊三角形,∴ED=OE=AE,∵CD⊥AE,∠CED=60°,∴∠CDE=30°,∴,∵,∴,∴,設(shè)△OED的高為h,∴,∴,∴.【點睛】本題主要考查扇形面積公式、切線的判定定理及解直角三角形,熟練掌握扇形面積公式、切線的判定定理及解直角三角形是解題的關(guān)鍵.5、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點M,根據(jù)AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進而得到OM=BF=2,可得到CM=OM,進而得到OC=4,AM垂直平分OC,可證得△AOC為等邊三角形,即可求解.(1)解:CH與⊙O相切.理由如下:如圖,連接OC、OD、AC,OC交AF于點M,∵AG=CG,∴∠ACG=∠CAG,∴,∵CD⊥AB,∴,∴,∴OC⊥AF,∵AB為直徑,∴∠AFB=90°,∵BH⊥CH,∴CH∥AF,∴OC⊥CH,∵OC為半徑,∴CH為⊙O的切線;(2)解:由(1)得:BH⊥CH,OC⊥CH,∴OC∥BH,∵CH∥AF,∴四邊形CMFH為平行四邊形,∵OC⊥CH,∴∠OCH=90°,∴四邊形CMFH為矩形,∴OC⊥AF,CM=HF=2,∴AM=FM,∵點O為AB的中點,∴OM=BF=2,∴CM=OM,∴OC=4,AM垂直平分OC,∴AC=AO,而AO=OC,∴AC=OC=OA,,∴△AOC為等邊三角形,∴∠AOC=60°,∵,∴∠AOD=∠AOC=60°,∴∠COD=120°,∴弧CD的長度為.【點睛】本題主要考查了圓的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高級審計師面試題及審計流程解析
- 人力資源薪酬績效主管筆試題及答案
- 中國聯(lián)通財務(wù)分析師財務(wù)分析筆試題及答案
- 2025年國際貨運代理平臺項目可行性研究報告
- 2025年智能互聯(lián)網(wǎng)家居集成項目可行性研究報告
- 2025年繪畫藝術(shù)數(shù)字化平臺項目可行性研究報告
- 2025年人工智能技術(shù)投資項目可行性研究報告
- 2025年高端制造業(yè)創(chuàng)意設(shè)計中心可行性研究報告
- 2025年光伏發(fā)電項目建設(shè)與經(jīng)濟效益可行性研究報告
- 2025年社區(qū)兒童教育項目可行性研究報告
- 2026屆八省聯(lián)考(T8聯(lián)考)2026屆高三年級12月檢測訓(xùn)練地理試卷(含答案詳解)
- 2025民生銀行總行資產(chǎn)經(jīng)營管理部社會招聘筆試題庫帶答案解析
- 公益性公墓建設(shè)項目竣工驗收報告
- 2026年上海工程技術(shù)大學(xué)單招職業(yè)傾向性測試題庫參考答案詳解
- 2025黑龍江大興安嶺地區(qū)韓家園林業(yè)局工勤崗位人員招聘40人備考考點試題及答案解析
- 2025年陜煤澄合礦業(yè)有限公司招聘(570人)筆試備考題庫附答案解析
- 2025年保密觀知識競賽題庫(含參考答案)
- 2025山西朔州市兩級法院司法輔助人員招聘16人筆試考試備考試題及答案解析
- 危險化學(xué)品應(yīng)急救援員崗位招聘考試試卷及答案
- 物業(yè)餐飲安全協(xié)議書
- 生物統(tǒng)計學(xué)期末復(fù)習題庫及答案
評論
0/150
提交評論