解析卷人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》重點(diǎn)解析試卷(含答案解析)_第1頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》重點(diǎn)解析試卷(含答案解析)_第2頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》重點(diǎn)解析試卷(含答案解析)_第3頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》重點(diǎn)解析試卷(含答案解析)_第4頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》重點(diǎn)解析試卷(含答案解析)_第5頁(yè)
已閱讀5頁(yè),還剩26頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》重點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、在平面直角坐標(biāo)系中,平行四邊形ABCD的頂點(diǎn)A、B、D的坐標(biāo)分別是(0,0),(5,0),(2,3),則頂點(diǎn)C的坐標(biāo)是()A.(7,3) B.(8,2) C.(3,7) D.(5,3)2、如圖,已知四邊形ABCD和四邊形BCEF均為平行四邊形,∠D=60°,連接AF,并延長(zhǎng)交BE于點(diǎn)P,若AP⊥BE,AB=3,BC=2,AF=1,則BE的長(zhǎng)為()A.5 B.2 C.2 D.33、在銳角△ABC中,∠BAC=60°,BN、CM為高,P為BC的中點(diǎn),連接MN、MP、NP,則結(jié)論:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④當(dāng)∠ABC=60°時(shí),MN∥BC,一定正確的有()A.①②③ B.②③④ C.①②④ D.①④4、如圖,把一張長(zhǎng)方形紙片ABCD沿AF折疊,使B點(diǎn)落在處,若,要使,則的度數(shù)應(yīng)為()A.20° B.55° C.45° D.60°5、如圖,點(diǎn)E是△ABC內(nèi)一點(diǎn),∠AEB=90°,D是邊AB的中點(diǎn),延長(zhǎng)線段DE交邊BC于點(diǎn)F,點(diǎn)F是邊BC的中點(diǎn).若AB=6,EF=1,則線段AC的長(zhǎng)為()A.7 B. C.8 D.9第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在正方形ABCD中,AB=4,E為對(duì)角線AC上與A,C不重合的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作EF⊥AB于點(diǎn)F,EG⊥BC于點(diǎn)G,連接DE,F(xiàn)G,下列結(jié)論:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值為3.其中正確結(jié)論的序號(hào)為_(kāi)_.2、如圖所示,正方形ABCD的面積為6,△CDE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線BD上有一動(dòng)點(diǎn)K,則KA+KE的最小值為_(kāi)____________.3、如圖,矩形ABCD的兩條對(duì)角線AC,BD交于點(diǎn)O,∠AOB=60°,AB=3,則矩形的周長(zhǎng)為_(kāi)____.4、如圖,將長(zhǎng)方形ABCD按圖中方式折疊,其中EF、EC為折痕,折疊后、、E在一直線上,已知∠BEC=65°,那么∠AEF的度數(shù)是_____.5、如圖,已知在矩形中,,,將沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)E處,連接,則的長(zhǎng)為_(kāi)________.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在銳角△ABC內(nèi)部作出一個(gè)菱形ADEF,使∠A為菱形的一個(gè)內(nèi)角,頂點(diǎn)D、E、F分別落在AB、BC、CA邊上.(要求:尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡)2、如圖,在正方形中,是直線上的一點(diǎn),連接,過(guò)點(diǎn)作,交直線于點(diǎn),連接.(1)當(dāng)點(diǎn)在線段上時(shí),如圖①,求證:;(2)當(dāng)點(diǎn)在直線上移動(dòng)時(shí),位置如圖②、圖③所示,線段,與之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的猜想,不需證明.3、如圖,在平行四邊形中,,..點(diǎn)在上由點(diǎn)向點(diǎn)出發(fā),速度為每秒;點(diǎn)在邊上,同時(shí)由點(diǎn)向點(diǎn)運(yùn)動(dòng),速度為每秒.當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),點(diǎn),同時(shí)停止運(yùn)動(dòng).連接,設(shè)運(yùn)動(dòng)時(shí)間為秒.(1)當(dāng)為何值時(shí),四邊形為平行四邊形?(2)設(shè)四邊形的面積為,求與之間的函數(shù)關(guān)系式.(3)當(dāng)為何值時(shí),四邊形的面積是四邊形的面積的四分之三?求出此時(shí)的度數(shù).(4)連接,是否存在某一時(shí)刻,使為等腰三角形?若存在,請(qǐng)求出此刻的值;若不存在,請(qǐng)說(shuō)明理由.4、如圖1,在平面直角坐標(biāo)系中,且;(1)試說(shuō)明是等腰三角形;(2)已知.寫(xiě)出各點(diǎn)的坐標(biāo):A(,),B(,),C(,).(3)在(2)的條件下,若一動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿線段BA向點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止.①若的一條邊與BC平行,求此時(shí)點(diǎn)M的坐標(biāo);②若點(diǎn)E是邊AC的中點(diǎn),在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,能否成為等腰三角形?若能,求出此時(shí)點(diǎn)M的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.5、D、分別是不等邊三角形即的邊、的中點(diǎn).是平面上的一動(dòng)點(diǎn),連接、,、分別是、的中點(diǎn),順次連接點(diǎn)、、、.(1)如圖,當(dāng)點(diǎn)在內(nèi)時(shí),求證:四邊形是平行四邊形;(2)若四邊形是菱形,點(diǎn)所在位置應(yīng)滿足什么條件?(直接寫(xiě)出答案,不需說(shuō)明理由.)-參考答案-一、單選題1、A【解析】【分析】利用平行四邊形的對(duì)邊平行且相等的性質(zhì),先利用對(duì)邊平行,得到D點(diǎn)和C點(diǎn)的縱坐標(biāo)相等,再求出CD=AB=5,得到C點(diǎn)橫坐標(biāo),最后得到C點(diǎn)的坐標(biāo).【詳解】解:四邊形ABCD為平行四邊形。且。C點(diǎn)和D的縱坐標(biāo)相等,都為3.A點(diǎn)坐標(biāo)為(0,0),B點(diǎn)坐標(biāo)為(5,0),.D點(diǎn)坐標(biāo)為(2,3),C點(diǎn)橫坐標(biāo)為,點(diǎn)坐標(biāo)為(7,3).故選:A.【點(diǎn)睛】本題主要是考察了平行四邊形的性質(zhì)、利用線段長(zhǎng)求點(diǎn)坐標(biāo),其中,熟練應(yīng)用平行四邊形對(duì)邊平行且相等的性質(zhì),是解決與平行四邊形有關(guān)的坐標(biāo)題的關(guān)鍵.2、D【解析】【分析】過(guò)點(diǎn)D作DH⊥BC,交BC的延長(zhǎng)線于點(diǎn)H,連接BD,DE,先證∠DHC=90o,再證四邊形ADEF是平行四邊形,最后利用勾股定理得出結(jié)果.【詳解】過(guò)點(diǎn)D作DH⊥BC,交BC的延長(zhǎng)線于點(diǎn)H,連接BD,DE,∵四邊形ABCD是平行四邊形,AB=3,∠ADC=60o,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60o,∵DH⊥BC,∴∠DHC=90o,∴∠ADC+∠CDH=90°,∴∠CDH=30°,在Rt△DCH中,CH=CD=,DH=,∴,∵四邊形BCEF是平行四邊形,∴AD=BC=EF,AD∥EF,∴四邊形ADEF是平行四邊形,∴AF∥DE,AF=DE=1,∵AF⊥BE,∴DE⊥BE,∴,∴,故選D.【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是熟練運(yùn)用這些性質(zhì)解決問(wèn)題.3、C【解析】【分析】利用直角三角形斜邊上的中線的性質(zhì)即可判定①正確;利用含30度角的直角三角形的性質(zhì)即可判定②正確,由勾股定理即可判定③錯(cuò)誤;由等邊三角形的判定及性質(zhì)、三角形中位線定理即可判定④正確.【詳解】∵CM、BN分別是高∴△CMB、△BNC均是直角三角形∵點(diǎn)P是BC的中點(diǎn)∴PM、PN分別是兩個(gè)直角三角形斜邊BC上的中線∴故①正確∵∠BAC=60゜∴∠ABN=∠ACM=90゜?∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正確在Rt△ABN中,由勾股定理得:故③錯(cuò)誤當(dāng)∠ABC=60゜時(shí),△ABC是等邊三角形∵CM⊥AB,BN⊥AC∴M、N分別是AB、AC的中點(diǎn)∴MN是△ABC的中位線∴MN∥BC故④正確即正確的結(jié)論有①②④故選:C【點(diǎn)睛】本題考查了直角三角形斜邊上中線的性質(zhì),含30度角的直角三角形的性質(zhì),等邊三角形的判定及性質(zhì),勾股定理,三角形中位線定理等知識(shí),掌握這些知識(shí)并正確運(yùn)用是解題的關(guān)鍵.4、B【解析】【分析】設(shè)直線AF與BD的交點(diǎn)為G,由題意易得,則有,由折疊的性質(zhì)可知,由平行線的性質(zhì)可得,然后可得,進(jìn)而問(wèn)題可求解.【詳解】解:設(shè)直線AF與BD的交點(diǎn)為G,如圖所示:∵四邊形ABCD是矩形,∴,∵,∴,由折疊的性質(zhì)可知,∵,∴,∴,∴;故選B.【點(diǎn)睛】本題主要考查折疊的性質(zhì)及矩形的性質(zhì),熟練掌握折疊的性質(zhì)及矩形的性質(zhì)是解題的關(guān)鍵.5、C【解析】【分析】根據(jù)直角三角形的性質(zhì)求出DE,由EF=1,得到DF,再根據(jù)三角形中位線定理即可求出線段AC的長(zhǎng).【詳解】解:∵∠AEB=90,D是邊AB的中點(diǎn),AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是邊AB的中點(diǎn),點(diǎn)F是邊BC的中點(diǎn),∴DF是ABC的中位線,∴AC=2DF=8.故選:C.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),三角形中位線定理,求出DF的長(zhǎng)是解題的關(guān)鍵.二、填空題1、①②③【解析】【分析】①連接BE,可得四邊形EFBG為矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,則∠OBF=∠OFB;由∠OBF=∠ADE,則∠OFB=∠ADE;由四邊形ABCD為正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的結(jié)論可得∠BFG=∠ADE;④由于點(diǎn)E為AC上一動(dòng)點(diǎn),當(dāng)DE⊥AC時(shí),根據(jù)垂線段最短可得此時(shí)DE最小,最小值為2,由①知FG=DE,所以FG的最小值為2.【詳解】解:①連接BE,交FG于點(diǎn)O,如圖,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四邊形EFBG為矩形.∴FG=BE,OB=OF=OE=OG.∵四邊形ABCD為正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正確;②延長(zhǎng)DE,交FG于M,交FB于點(diǎn)H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正確;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正確;④∵點(diǎn)E為AC上一動(dòng)點(diǎn),∴根據(jù)垂線段最短,當(dāng)DE⊥AC時(shí),DE最小.∵AD=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值為2,∴④錯(cuò)誤.綜上,正確的結(jié)論為:①②③.故答案為:①②③.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)與判定,正方形的性質(zhì),勾股定理,垂線段最短,掌握正方形的性質(zhì)是解題的關(guān)鍵.2、【解析】【分析】根據(jù)正方形的性質(zhì)可知C、A關(guān)于BD對(duì)稱(chēng),推出CK=AK,推出EK+AK≥CE,根據(jù)等邊三角形性質(zhì)推出CE=CD,根據(jù)正方形面積公式求出CD即可.【詳解】解:∵四邊形ABCD是正方形,∴C、A關(guān)于BD對(duì)稱(chēng),即C關(guān)于BD的對(duì)稱(chēng)點(diǎn)是A,如圖,連接CK,則CK=AK,∴EK+CK≥CE,∵△CDE是等邊三角形,∴CE=CD,∵正方形ABCD的面積為6,∴CD=,∴KA+KE的最小值為,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),軸對(duì)稱(chēng)-最短路徑問(wèn)題,等邊三角形的性質(zhì)等知識(shí)點(diǎn)的應(yīng)用,解此題的關(guān)鍵是確定K的位置和求出KA+KE的最小值是CE.3、##【解析】【分析】根據(jù)矩形性質(zhì)得出AD=BC,AB=CD,∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,推出OA=OB=OC=OD,得出等邊三角形AOB,求出BD,根據(jù)勾股定理求出AD即可.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,∴OA=OB=OC=OD,∵∠AOB=60°,OB=OA,∴△AOB是等邊三角形,∵AB=3,∴OA=OB=AB=3,∴BD=2OB=6,在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=3,∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=3,∴矩形ABCD的周長(zhǎng)是AB+BC+CD+AD=6+6.故答案為:6+6.【點(diǎn)睛】本題考查了矩形性質(zhì),等邊三角形的性質(zhì)和判定,勾股定理等知識(shí)點(diǎn),關(guān)鍵是求出AD的長(zhǎng).4、25°【解析】【分析】利用翻折變換的性質(zhì)即可解決.【詳解】解:由折疊可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案為:25°.【點(diǎn)睛】本題考查了折疊的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.5、【解析】【分析】過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,先證明CG=AG,再利用勾股定理列方程,求出AG的值,結(jié)合三角形的面積法和勾股定理,即可求解.【詳解】解:如圖所示:過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,有折疊的性質(zhì)可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,設(shè)CG=x,則DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【點(diǎn)睛】本題主要考查矩形的性質(zhì),折疊的性質(zhì),勾股定理,等腰三角形的判定定理,添加輔助線構(gòu)造直角三角形,是解題的關(guān)鍵.三、解答題1、見(jiàn)解析【分析】根據(jù)基本作圖先作∠BAC的平分線AE,交BC于E,再利用基本作圖作AE的垂直平分線DF交AB于D,交AC與F,連接DE,EF,則菱形ADEF為所求,然后證明即可.【詳解】解:先作∠BAC的平分線AE,交BC于E,作AE的垂直平分線DF交AB于D,交AC與F,連接DE,EF,證明:∵DF是AE的垂直平分線,∴AD=DE,AF=EF,∴∠DEA=∠DAE,∠FAE=∠FEA,∵AE平分∠BAC,∴∠DAE=∠FAE,∴∠DEA=∠DAE=∠FAE,∠FEA=∠FAE=∠DAE,∴DE∥AF,EF∥AD,∴四邊形ADEF為平行四邊形,∵AD=DE,∴四邊形ADEF為菱形,

如圖,則菱形ADEF就是所求作的圖形.【點(diǎn)睛】本題考查尺規(guī)作菱形,基本作圖角平分線,線段垂直平分線,掌握尺規(guī)作菱形的方法,基本作圖角平分線,線段垂直平分線,菱形判定是解題關(guān)鍵.2、(1)見(jiàn)解析;(2)圖②中,圖③中【分析】(1)在上截取,連接,可先證得,則,,進(jìn)而可證得△AED為等腰直角三角形,即可得證;(2)仿照(1)的證明思路,作出相應(yīng)的輔助線,即可證得對(duì)應(yīng)的,與之間的數(shù)量關(guān)系.【詳解】解:(1)證明:如圖,在上截取,連接.∵四邊形是正方形,,,,,,,,,,,,,,∴△ECF是等腰直角三角形,在中,,,;

(2)圖②:,理由如下:如下圖,在延長(zhǎng)線上截取,連接.

∵四邊形是正方形,,,,,,,,,,,,,∴△ECF是等腰直角三角形,在中,,,;圖③:如圖,在DE上截取DF=BE,連接.

∵四邊形是正方形,,,,,,,,,,,,,∴△ECF是等腰直角三角形,在中,,,.【點(diǎn)睛】本題是四邊形綜合題,考查了正方形的性質(zhì)、全等三角形的判定及性質(zhì)、等腰直角三角形、勾股定理等相關(guān)知識(shí),正確作出輔助線構(gòu)造全等三角形是解決本題的關(guān)鍵.3、(1);(2)y=S四邊形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)當(dāng)t=4或

或時(shí),為等腰三角形,理由見(jiàn)解析.【分析】(1)利用平行四邊形的對(duì)邊相等AQ=BP建立方程求解即可;

(2)先構(gòu)造直角三角形,求出AE,再用梯形的面積公式即可得出結(jié)論;

(3)利用面積關(guān)系求出t,即可求出DQ,進(jìn)而判斷出DQ=PQ,即可得出結(jié)論;

(4)分三種情況,利用等腰三角形的性質(zhì),兩腰相等建立方程求解即可得出結(jié)論.【詳解】解:(1)∵在平行四邊形中,,,由運(yùn)動(dòng)知,AQ=16?t,BP=2t,

∵四邊形ABPQ為平行四邊形,

∴AQ=BP,

∴16?t=2t

∴t=,

即:t=s時(shí),四邊形ABPQ是平行四邊形;(2)過(guò)點(diǎn)A作AE⊥BC于E,如圖,在Rt△ABE中,∠B=30°,AB=8,

∴AE=4,

由運(yùn)動(dòng)知,BP=2t,DQ=t,

∵四邊形ABCD是平行四邊形,

∴AD=BC=16,

∴AQ=16?t,

∴y=S四邊形ABPQ=(BP+AQ)?AE=(2t+16?t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,

∵BC=16,

∴S四邊形ABCD=16×4=64,

由(2)知,y=S四邊形ABPQ=2t+32(0<t≤8),

∵四邊形ABPQ的面積是四邊形ABCD的面積的四分之三

∴2t+32=×64,

∴t=8;

如圖,當(dāng)t=8時(shí),點(diǎn)P和點(diǎn)C重合,DQ=8,

∵CD=AB=8,

∴DP=DQ,

∴∠DQC=∠DPQ,

∴∠D=∠B=30°,

∴∠DQP=75°;(4)①當(dāng)AB=BP時(shí),BP=8,

即2t=8,t=4;

②當(dāng)AP=BP時(shí),如圖,∵∠B=30°,

過(guò)P作PM垂直于AB,垂足為點(diǎn)M,

∴BM=4,,解得:BP=,

∴2t=,

∴t=

③當(dāng)AB=AP時(shí),同(2)的方法得,BP=,

∴2t=,

∴t=

所以,當(dāng)t=4或或時(shí),△ABP為等腰三角形.【點(diǎn)睛】此題是四邊形綜合題,主要考查了平行四邊形的性質(zhì),含30°的直角三角形的性質(zhì),等腰三角形的性質(zhì),解(1)的關(guān)鍵是利用AQ=BP建立方程,解(2)的關(guān)鍵是求出梯形的高,解(3)的關(guān)鍵是求出t,解(4)的關(guān)鍵是分類(lèi)討論的思想思考問(wèn)題.4、(1)見(jiàn)解析;(2)12,0;-8,0;0,16;(3)①當(dāng)M的坐標(biāo)為(2,0)或(4,0)時(shí),△OMN的一條邊與BC平行;②當(dāng)M的坐標(biāo)為(0,10)或(12,0)或(,0)時(shí),,△MOE是等腰三角形.

【分析】(1)設(shè),,,則,由勾股定理求出,即可得出結(jié)論;(2)由的面積求出m的值,從而得到、、的長(zhǎng),即可得到A、B、C的坐標(biāo);(3)①分當(dāng)時(shí),;當(dāng)時(shí),;得出方程,解方程即可;②由直角三角形的性質(zhì)得出,根據(jù)題意得出為等腰三角形,有3種可能:如果;如果;如果;分別得出方程,解方程即可.【詳解】解:(1)證明:設(shè),,,則,在中,,,∴是等腰三角形;(2)∵,,∴,∴,,,.∴A點(diǎn)坐標(biāo)為(12,0),B點(diǎn)坐標(biāo)為(-8,0),C點(diǎn)坐標(biāo)為(0,16),故答案

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論