版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學上冊《全等三角形》綜合訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、在正方形網(wǎng)格中,∠AOB的位置如圖所示,到∠AOB兩邊距離相等的點應是(
)A.點M B.點N C.點P D.點Q2、下列語句中正確的是()A.斜邊和一銳角對應相等的兩個直角三角形全等B.有兩邊對應相等的兩個直角三角形全等C.有兩個角對應相等的兩個直角三角形全等D.有一直角邊和一銳角對應相等的兩個直角三角形全等3、下列各組的兩個圖形屬于全等圖形的是(
)A. B. C. D.4、已知∠AOB=60°,以O為圓心,以任意長為半徑作弧,交OA,OB于點M,N,分別以點M,N為圓心,以大于MN的長度為半徑作弧,兩弧在∠AOB內(nèi)交于點P,以OP為邊作∠POC=15°,則∠BOC的度數(shù)為()A.15° B.45° C.15°或30° D.15°或45°5、如圖,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=7cm,則△DBE的周長是(
)A.6cm B.7cm C.8cm D.9cm第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在x、y軸上分別截取OA、OB,使OA=OB,再分別以點A、B為圓心,以大于AB的長度為半徑畫弧,兩弧交于點C.若C的坐標為(3a,﹣a+8),則a=_____.2、如圖是由4個相同的小正方形組成的網(wǎng)格圖,其中∠1+∠2=______.
3、如圖,給出下列結論:①;②;③;④.其中正確的有_______(填寫答案序號).4、如圖所示的網(wǎng)格是正方形網(wǎng)格,點A,B,C,D均落在格點上,則∠BAD+∠ADC=_____.5、如圖,已知的周長是22,PB、PC分別平分和,于D,且,的面積是________.三、解答題(5小題,每小題10分,共計50分)1、如圖,已知中,,是內(nèi)一點,且,試說明的理由.2、中,,,過點作,連接,,為平面內(nèi)一動點.(1)如圖1,點在上,連接,,過點作于點,為中點,連接并延長,交于點.①若,,則;②求證:.(2)如圖2,連接,,過點作于點,且滿足,連接,,過點作于點,若,,,請求出線段的取值范圍.3、如圖1,點P、Q分別是邊長為4cm的等邊三角形ABC的邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s.(1)連接AQ、CP交于點M,則在P,Q運動的過程中,證明≌;(2)會發(fā)生變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);(3)P、Q運動幾秒時,是直角三角形?(4)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則變化嗎?若變化說明理由,若不變,則求出它的度數(shù)。4、如圖AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.(1)求證AD=AE;(2)連接OA,BC,試判斷直線OA,BC的關系并說明理由.5、方格紙上有2個圖形,你能沿著格線把每一個圖形都分成完全相同的兩個部分嗎?請畫出分割線.-參考答案-一、單選題1、A【解析】【分析】利用到角的兩邊的距離相等的點在角的平分線上進行判斷.【詳解】點P、Q、M、N中在∠AOB的平分線上的是M點.故選:A.【考點】本題主要考查了角平分線的性質(zhì),根據(jù)正方形網(wǎng)格看出∠AOB平分線上的點是解答問題的關鍵.2、A【解析】【分析】根據(jù)全等三角形的判定定理,用排除法以每一個選項進行分析從而確定最終答案.【詳解】A、正確,利用AAS來判定全等;B、不正確,兩邊的位置不確定,不一定全等;C、不正確,兩個三角形不一定全等;D、不正確,有一直角邊和一銳角對應相等不一定能推出兩直角三角形全等,沒有相關判定方法對應.故選A【考點】本題考核知識點:全等三角形的判定.解題關鍵點:熟記全等三角形的相關判定.3、D【解析】【分析】根據(jù)全等圖形的定義,逐一判斷選項,即可.【詳解】解:A、兩個圖形不能完全重合,不是全等圖形,不符合題意,B.兩個圖形不能完全重合,不是全等圖形,符合題意,C.兩個圖形不能完全重合,不是全等圖形,不符合題意,D.兩個圖形能完全重合,是全等圖形,不符合題意,故選D.【考點】本題主要考查全等圖形的定義,熟練掌握“能完全重合的兩個圖形,是全等圖形”是解題的關鍵.4、D【解析】【分析】根據(jù)題意作圖,可得出OP為∠AOB的角平分線,有,以OP為邊作∠POC=15°,則∠BOC的度數(shù)有兩種情況,依據(jù)所作圖形即可得解.【詳解】解:(1)以O為圓心,以任意長為半徑作弧,交OA,OB于點M,N,分別以點M,N為圓心,以大于MN的長度為半徑作弧,兩弧在∠AOB內(nèi)交于點P,則OP為∠AOB的平分線,∴(2)兩弧在∠AOB內(nèi)交于點P,以OP為邊作∠POC=15°,則∠BOC=15°或45°,故選:D.【考點】本題考查的知識點是根據(jù)題意作圖并求解,依據(jù)題意作出正確的圖形是解題的關鍵.5、B【解析】【分析】由在△ABC中,∠C=90°,AC=BC,∠BAC的平分線AD交BC于D,DE⊥AB于E,根據(jù)角平分線的性質(zhì),可得CD=ED,AC=AE=BC,繼而可得△DBE的周長=AB.【詳解】∵在△ABC中,∠C=90°,∠BAC的平分線AD交BC于D,DE⊥AB于E,∴CD=ED,∠ADC=∠ADE,∴AE=AC,∵AC=BC,∴BC=AE,∴△DBE的周長是:BD+DE+BE=BD+CD+BE=BC+BE=AE+BE=AB=7cm.故選B.【考點】此題考查了角平分線的性質(zhì).此題難度適中,注意掌握數(shù)形結合思想與轉化思想的應用.二、填空題1、2【解析】【分析】根據(jù)尺規(guī)作圖可知,點C在∠AOB角平分線上,所以C點的橫坐標和縱坐標相等,即可以求出a的值.【詳解】解:根據(jù)題目尺規(guī)作圖可知,交點C是∠AOB角平分線上的一點,∵點C在第一象限,∴點C的橫坐標和縱坐標都是正數(shù)且橫坐標等于縱坐標,即3a=-a+8,得a=2,故答案為:2.【考點】本題考查了角平分線尺規(guī)作圖,角平分線的性質(zhì),以及平面直角坐標系的知識,結合直角坐標系的知識列方程求解是解答本題的關鍵.2、180°或180度【解析】【分析】由全等三角形性質(zhì)和鄰補角定義可求得.【詳解】解:如圖:根據(jù)題意得∶BC=DE,∠E=∠B=90°,AB=AE,所以△ABC≌△AED,所以∠1=∠ACB.又因為∠2+∠ACB=180°,所以,∠2+∠1=180°.故答案為:180°【考點】本題考核知識點∶全等三角形性質(zhì)和鄰補角定義.3、①③④【解析】【分析】利用AAS可證明△ABE≌△ACF,可得AC=AB,∠BAE=∠CAF,利用角的和差關系可得∠EAM=∠FAN,可得③正確,利用ASA可證明△AEM≌△AFN,可得EM=FN,AM=AN,可得①③正確;根據(jù)線段的和差關系可得CM=BN,利用AAS可證明△CDM≌△BDN,可得CD=DB,可得②錯誤;利用ASA可證明△ACN≌△ABM,可得④正確;綜上即可得答案.【詳解】在△ABE和△ACF中,,∴△ABE≌△ACF,∴AB=AC,∠BAE=∠CAF,∴∠BAE-∠BAC=∠CAF-∠BAC,即∠FAN=∠EAM,故③正確,在△AEM和△AFN中,,∴△AEM≌△AFN,∴EM=FN,AM=AN,故①正確,∴AC-AM=AB-AN,即CM=BN,在△CDM和△BDN中,,∴CD=DB,故②錯誤,在△CAN和△ABM中,,∴△ACN≌△ABM,故④正確,綜上所述:正確的結論有①③④,故答案為:①③④【考點】本題考查全等三角形的判定與性質(zhì),判定兩個三角形全等的方法有:SSS、SAS、AAS、ASA、HL,注意:SSA、AAA不能判定三角形確定,當利用SAS證明時,角必須是兩邊的夾角;熟練掌握全等三角形的判定定理是解題關鍵.4、或度【解析】【分析】證明△DCE≌△ABD(SAS),得∠CDE=∠DAB,根據(jù)同角的余角相等和三角形的內(nèi)角和可得結論.【詳解】解:如圖,設AB與CD相交于點F,在△DCE和△ABD中,∵,∴△DCE≌△ABD(SAS),∴∠CDE=∠DAB,∵∠CDE+∠ADC=∠ADC+∠DAB=90°,∴∠AFD=90°,∴∠BAC+∠ACD=90°,故答案為:90度.【考點】本題網(wǎng)格型問題,考查了三角形全等的性質(zhì)和判定及直角三角形各角的關系,本題構建全等三角形是關鍵.5、33【解析】【分析】連接AP,過點P分別作PE⊥AB于點E,PF⊥AC于點F,根據(jù)角平分線的性質(zhì)定理,可得PD=PE=PF=3,再根據(jù)三角形的面積等于三個小三角形的面積之和,即可求解.【詳解】解:如圖,連接AP,過點P分別作PE⊥AB于點E,PF⊥AC于點F,∵PB、PC分別平分和,于D,∴PD=PE,PD=PF,∴PD=PE=PF=3,∵的周長是22,∴的面積是.故答案為:33【考點】本題主要考查了角平分線的性質(zhì)定理,熟練掌握角平分線上的點到角兩邊的距離相等是解題的關鍵.三、解答題1、詳見解析【解析】【分析】先證明,再利用全等三角形的性質(zhì)得到,然后利用等腰三角形三線合一的性質(zhì),即可證明.【詳解】證明:在與中,∴∴(全等三角形的對應角相等)∵(已知)∴(等腰三角形的三線合一)【考點】本題考查全等三角形的判定和性質(zhì)、等腰三角形的性質(zhì)等知識,解題的關鍵是正確尋找全等三角形解決問題和等腰三角形三線合一性質(zhì)的運用.2、(1)①
4,②見解析;(2)6≤≤12【解析】【分析】(1)①根據(jù)三角形的面積公式計算即可;②先根據(jù)AAS證得△ABF≌△BCM,得出BF=MC,AF=BM,再利用AAS證得△AFD≌△CHD,得出AF=CH,即可得出結論;(2)連接CM,先利用SAS得出△≌△CBM,得出,再根據(jù)等底同高的三角形的面積相等得出,再利用三角形的面積公式得出EC的長,從而利用三角形的三邊關系得出的取值范圍;【詳解】解:(1)①∵,,,∴,②∵,,∴∠AFB=∠BMC=∠FMC=90°,∴∠ABF+∠BAF=90°,∵,∴∠ABF+∠CBM=90°,∴∠BAF=∠CBM,∵,∴△ABF≌△BCM,∴BF=MC,AF=BM,∵∠AFB=∠FMC=90°,∴AF//CM,∴∠FAC=∠HCD,∵為中點,∴AD=CD,∵∠FDA=∠HDC,∴△AFD≌△CHD,∴AF=CH,∴BM=CH,∵BF=CM∴BF-BM=CM-CH∴.(2)連接CM,∵,,∴∠ABC=∠=90°,∴∠BA=∠CBM,∵,,∴△≌△CBM,∴,∵,,∴∠ABC+∠BAE=180°,∴AE//BC,∴,∵,,∴,∴EC=9在△ECM中,,則9-3≤CM≤9+3,∴6≤CM≤12,∴6≤≤12,【考點】本題考查了全等三角形的判定和性質(zhì)以及三角形的三邊關系,靈活運用全等三角形的判定是解題的關鍵.3、(1)見解析;(2)∠CMQ=60°,不變;(3)當?shù)诿牖虻诿霑r,△PBQ為直角三角形;(4)∠CMQ=120°,不變.【解析】【分析】(1)利用SAS可證全等;(2)先證△ABQ≌△CAP,得出∠BAQ=∠ACP,通過角度轉化,可得出∠CMQ=60°;(3)存在2種情況,一種是∠PQB=90°,另一種是∠BPQ=90°,分別根據(jù)直角三角形邊直角的關系可求得t的值;(4)先證△PBC≌△ACQ,從而得出∠BPC=∠MQC,然后利用角度轉化可得出∠CMQ=120°.【詳解】(1)證明:在等邊三角形ABC中,AB=AC,∠B=∠CAP=60°又由題中“點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s.”可知:AP=BQ∴≌;(2)∠CMQ=60°不變∵等邊三角形中,AB=AC,∠B=∠CAP=60°又由條件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°;(3)設時間為t,則AP=BQ=t,PB=4-t,①當∠PQB=90°時,∵∠B=60°,∴PB=2BQ,得4-t=2t,t=;②當∠BPQ=90°時,∵∠B=60°,∴BQ=2BQ,得t=2(4-t),t=;∴當?shù)诿牖虻诿霑r,△PBQ為直角三角形;(4)∠CMQ=120°不變,∵在等邊三角形中,AB=AC,∠B=∠CAP=60°,∴∠PBC=∠ACQ=120°,又由條件得BP=CQ,∴△PBC≌△ACQ(SAS),∴∠BPC=∠MQC,又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°-60°=120°.【考點】本題考查動點問題中三角形的全等,解題關鍵是找出圖形中的全等三角形,利用全等三角形的性質(zhì)進行角度轉化,得出需要的結論.4、(1)證明見解析;(2)互相垂直,證明見解析【解析】【分析】(1)根據(jù)AAS推出△ACD≌△ABE,根據(jù)全等三角形的性質(zhì)得出即可;(2)證Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根據(jù)等腰三角形的性質(zhì)推出即可.【詳解】(1)證明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°,△ACD和△ABE中,∵∴△ACD≌△ABE(AAS),∴AD=AE.(2)猜想:OA⊥BC.證明:連接OA、BC,∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°.在Rt△ADO和Rt△AEO中,∵∴Rt△ADO≌
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 從理論到實踐紀檢監(jiān)察案例管理面試題庫
- 會計職稱考試備考資料與重點難點解析
- 電氣工程師面試題及答案詳解
- 2025年數(shù)字醫(yī)療設備市場拓展項目可行性研究報告
- 2025年城鄉(xiāng)一體化產(chǎn)業(yè)扶貧項目可行性研究報告
- 2025年健康飲品品牌推廣計劃可行性研究報告
- 2025年西南地區(qū)特色農(nóng)產(chǎn)品品牌建設可行性研究報告
- 2025年區(qū)塊鏈在金融行業(yè)應用可行性研究報告
- 2026年河南對外經(jīng)濟貿(mào)易職業(yè)學院單招職業(yè)適應性測試題庫參考答案詳解
- 2026年江西軟件職業(yè)技術大學單招職業(yè)技能測試題庫及參考答案詳解一套
- 2025江蘇南京市市場監(jiān)督管理局所屬事業(yè)單位招聘高層次人才5人(公共基礎知識)測試題帶答案解析
- 2025年二級建造師繼續(xù)教育考試題庫及答案
- 2026年泰安銀行股份有限公司校園招聘(70人)筆試備考題庫帶答案解析
- 足球D級教練員導師課件
- 泵站、水閘混凝土施工實施細則
- (一模)2025年嘉興市2026屆高三教學測試思想政治試卷(含答案)
- 《鷸》分鏡頭腳本
- 結構加固施工驗收方案
- 小班美術活動《漂亮的帽子》課件
- 礦山破碎設備安全操作規(guī)程
- 暖通工程調(diào)試及試運行總結報告
評論
0/150
提交評論