版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2026屆廣東省汕頭潮陽區(qū)數(shù)學高三上期末復習檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標系xOy中,已知橢圓的右焦點為,若F到直線的距離為,則E的離心率為()A. B. C. D.2.已知集合A={x|x<1},B={x|},則A. B.C. D.3.()A. B. C. D.4.已知(),i為虛數(shù)單位,則()A. B.3 C.1 D.55.已知為坐標原點,角的終邊經(jīng)過點且,則()A. B. C. D.6.執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.7.某地區(qū)高考改革,實行“3+2+1”模式,即“3”指語文、數(shù)學、外語三門必考科目,“1”指在物理、歷史兩門科目中必選一門,“2”指在化學、生物、政治、地理以及除了必選一門以外的歷史或物理這五門學科中任意選擇兩門學科,則一名學生的不同選科組合有()A.8種 B.12種 C.16種 D.20種8.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內(nèi)切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.9.若集合,,則()A. B. C. D.10.設為的兩個零點,且的最小值為1,則()A. B. C. D.11.記等差數(shù)列的公差為,前項和為.若,,則()A. B. C. D.12.在邊長為2的菱形中,,將菱形沿對角線對折,使二面角的余弦值為,則所得三棱錐的外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從一箱產(chǎn)品中隨機地抽取一件,設事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產(chǎn)品不是一等品”的概率為________14.已知函數(shù),則________;滿足的的取值范圍為________.15.已知集合,,則__________.16.已知函數(shù)在上單調(diào)遞增,則實數(shù)a值范圍為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若在處取得極值,求的值;(2)求在區(qū)間上的最小值;(3)在(1)的條件下,若,求證:當時,恒有成立.18.(12分)第十四屆全國冬季運動會召開期間,某校舉行了“冰上運動知識競賽”,為了解本次競賽成績情況,從中隨機抽取部分學生的成績(得分均為整數(shù),滿分100分)進行統(tǒng)計,請根據(jù)頻率分布表中所提供的數(shù)據(jù),解答下列問題:(1)求、、的值及隨機抽取一考生其成績不低于70分的概率;(2)若從成績較好的3、4、5組中按分層抽樣的方法抽取5人參加“普及冰雪知識”志愿活動,并指定2名負責人,求從第4組抽取的學生中至少有一名是負責人的概率.組號分組頻數(shù)頻率第1組150.15第2組350.35第3組b0.20第4組20第5組100.1合計1.0019.(12分)已知,均為正數(shù),且.證明:(1);(2).20.(12分)的內(nèi)角A,B,C的對邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.21.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.22.(10分)已知關于的不等式有解.(1)求實數(shù)的最大值;(2)若,,均為正實數(shù),且滿足.證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由已知可得到直線的傾斜角為,有,再利用即可解決.【詳解】由F到直線的距離為,得直線的傾斜角為,所以,即,解得.故選:A.本題考查橢圓離心率的問題,一般求橢圓離心率的問題時,通常是構造關于的方程或不等式,本題是一道容易題.2.A【解析】∵集合∴∵集合∴,故選A3.B【解析】
利用復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】.故選B.本題考查復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.4.C【解析】
利用復數(shù)代數(shù)形式的乘法運算化簡得答案.【詳解】由,得,解得.故選:C.本題考查復數(shù)代數(shù)形式的乘法運算,是基礎題.5.C【解析】
根據(jù)三角函數(shù)的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結果.【詳解】根據(jù)題意,,解得,所以,所以,所以.故選:C.本題考查三角函數(shù)定義的應用和二倍角的正弦公式,考查計算能力.6.C【解析】
由程序語言依次計算,直到時輸出即可【詳解】程序的運行過程為當n=2時,時,,此時輸出.故選:C本題考查由程序框圖計算輸出結果,屬于基礎題7.C【解析】
分兩類進行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對應的組合數(shù),即可求出結果.【詳解】若一名學生只選物理和歷史中的一門,則有種組合;若一名學生物理和歷史都選,則有種組合;因此共有種組合.故選C本題主要考查兩個計數(shù)原理,熟記其計數(shù)原理的概念,即可求出結果,屬于常考題型.8.D【解析】
根據(jù)題意畫出幾何關系,由四邊形的內(nèi)切圓面積求得半徑,結合四邊形面積關系求得與等量關系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關系如下圖所示:設四邊形的內(nèi)切圓半徑為,雙曲線半焦距為,則所以,四邊形的內(nèi)切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距的最小值為.故選:D本題考查了雙曲線的定義及其性質的簡單應用,圓錐曲線與基本不等式綜合應用,屬于中檔題.9.B【解析】
根據(jù)正弦函數(shù)的性質可得集合A,由集合性質表示形式即可求得,進而可知滿足.【詳解】依題意,;而,故,則.故選:B.本題考查了集合關系的判斷與應用,集合的包含關系與補集關系的應用,屬于中檔題.10.A【解析】
先化簡已知得,再根據(jù)題意得出f(x)的最小值正周期T為1×2,再求出ω的值.【詳解】由題得,設x1,x2為f(x)=2sin(ωx﹣)(ω>0)的兩個零點,且的最小值為1,∴=1,解得T=2;∴=2,解得ω=π.故選A.本題考查了三角恒等變換和三角函數(shù)的圖象與性質的應用問題,是基礎題.11.C【解析】
由,和,可求得,從而求得和,再驗證選項.【詳解】因為,,所以解得,所以,所以,,,故選:C.本題考查等差數(shù)列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.12.D【解析】
取AC中點N,由題意得即為二面角的平面角,過點B作于O,易得點O為的中心,則三棱錐的外接球球心在直線BO上,設球心為,半徑為,列出方程即可得解.【詳解】如圖,由題意易知與均為正三角形,取AC中點N,連接BN,DN,則,,即為二面角的平面角,過點B作于O,則平面ACD,由,可得,,,即點O為的中心,三棱錐的外接球球心在直線BO上,設球心為,半徑為,,,解得,三棱錐的外接球的表面積為.故選:D.本題考查了立體圖形外接球表面積的求解,考查了空間想象能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.0.35【解析】
根據(jù)對立事件的概率和為1,結合題意,即可求出結果來.【詳解】解:由題意知本題是一個對立事件的概率,抽到的不是一等品的對立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.本題考查了求互斥事件與對立事件的概率的應用問題,屬于基礎題.14.【解析】
首先由分段函數(shù)的解析式代入求值即可得到,分和兩種情況討論可得;【詳解】解:因為,所以,∵,∴當時,滿足題意,∴;當時,由,解得.綜合可知:滿足的的取值范圍為.故答案為:;.本題考查分段函數(shù)的性質的應用,分類討論思想,屬于基礎題.15.【解析】
直接根據(jù)集合和集合求交集即可.【詳解】解:,,所以.故答案為:本題考查集合的交集運算,是基礎題.16.【解析】
由在上恒成立可求解.【詳解】,令,∵,∴,又,,從而,令,問題等價于在時恒成立,∴,解得.故答案為:.本題考查函數(shù)的單調(diào)性,解題關鍵是問題轉化為恒成立,利用換元法和二次函數(shù)的性質易求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)2;(2);(3)證明見解析【解析】
(1)先求出函數(shù)的定義域和導數(shù),由已知函數(shù)在處取得極值,得到,即可求解的值;(2)由(1)得,定義域為,分,和三種情況討論,分別求得函數(shù)的最小值,即可得到結論;(3)由,得到,把,只需證,構造新函數(shù),利用導數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由,定義域為,則,因為函數(shù)在處取得極值,所以,即,解得,經(jīng)檢驗,滿足題意,所以.(2)由(1)得,定義域為,當時,有,在區(qū)間上單調(diào)遞增,最小值為,當時,由得,且,當時,,單調(diào)遞減;當時,,單調(diào)遞增;所以在區(qū)間上單調(diào)遞增,最小值為,當時,則,當時,,單調(diào)遞減;當時,,單調(diào)遞增;所以在處取得最小值,綜上可得:當時,在區(qū)間上的最小值為1,當時,在區(qū)間上的最小值為.(3)由得,當時,,則,欲證,只需證,即證,即,設,則,當時,,在區(qū)間上單調(diào)遞增,當時,,即,故,即當時,恒有成立.本題主要考查導數(shù)在函數(shù)中的綜合應用,以及不等式的證明,著重考查了轉化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于此類問題,通常要構造新函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構造新函數(shù),直接把問題轉化為函數(shù)的最值問題.18.(1),,,;(2)【解析】
(1)根據(jù)第1組的頻數(shù)和頻率求出,根據(jù)頻數(shù)、頻率、的關系分別求出,進而求出不低于70分的概率;(2)由(1)得,根據(jù)分層抽樣原則,分別從抽出2人,2人,1人,并按照所在組對抽出的5人編號,列出所有2名負責人的抽取方法,得出第4組抽取的學生中至少有一名是負責人的抽法數(shù),由古典概型概率公式,即可求解.【詳解】(1),,,由頻率分布表可得成績不低于70分的概率約為:(2)因為第3、4、5組共有50名學生,所以利用分層抽樣在50名學生中抽取5名學生,每組分別為:第3組:人,第4組:人,第5組:人,所以第3、4、5組分別抽取2人,2人,1人設第3組的3位同學為、,第4組的2位同學為、,第5組的1位同學為,則從五位同學中抽兩位同學有10種可能抽法如下:,,,,,,,,,,其中第4組的2位同學、至少有一位同學是負責人有7種抽法,故所求的概率為.本題考查補全頻率分布表、古典概型的概率,屬于基礎題.19.(1)見解析(2)見解析【解析】
(1)由進行變換,得到,兩邊開方并化簡,證得不等式成立.(2)將化為,然后利用基本不等式,證得不等式成立.【詳解】(1),兩邊加上得,即,當且僅當時取等號,∴.(2).當且僅當時取等號.本小題主要考查利用基本不等式證明不等式成立,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.20.(1)(2)【解析】
(1)由正弦定理邊化角化簡已知條件可求得,即可求得;(2)由余弦定理借助基本不等式可求得,即可求出的面積的最大值.【詳解】(1),,所以,所以,,,,.(2)由余弦定理得.,,當且僅當時取等,.所以的面積的最大值為.本題考查了正余弦定理在解三角形中的應用,考查了三角形面積的最值問題,難度較易.21.(1)證明見解析(2)【解析】
(1)取中點連接,得,可得,可證,可得,進而平面,即可證明結論;(2)設分別為邊的中點,連,可得,,可得(或補角)是異面直線與所成的角,,可得,為二面角的平面角,即,設,求解,即可得出結論.【詳解】(1)證明:取中點連接,由則,則,故,,平面,又平面,故平面平面(2)解法一:設分別為邊的中點,則,(或補角)是異面直線與所成的角.設為邊的中點,則,由知.又由(1)有平面,平面,所以為二面角的平面角,,設則在中,從而在中,,又,從而在中,因,,因此,異面直線與所成角的余弦值為.解法二:過點作交于點由(1)易知兩兩垂直,以為原點,射線分別為軸,軸,軸的正半軸,建立空間直角坐標系.不妨設,由,易知點的坐標分別為則顯然向量是平面的法向量已知二面角為,設,則設平面的法向量為,則令,則由由上式整理得,解之得(舍)或,因此,異面直線與所成角的余弦值為.本題考查空間點、線、面位置關系,證明平面與平面垂直,考查空間角,涉及到二面角、異面直線所成的角,做出空間角對應的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 瓣膜介入術后抗血小板治療方案的優(yōu)化
- 現(xiàn)代技術輔助下的中藥辨證論治臨床試驗設計
- 崗位技能測試題及評分標準
- 訴訟支持專員的年度工作安排與考核
- 成型機床建設項目可行性分析報告(總投資12000萬元)
- 干酪、干酪素項目可行性分析報告范文
- 特需服務質量效益平衡策略
- 財務分析師的職位攻略面試題及答案解析
- 深度解析(2026)《GBT 18932.21-2003蜂蜜中氯霉素殘留量的測定方法 酶聯(lián)免疫法》
- 程序員求職攻略與常見問題解析
- (正式版)JBT 9229-2024 剪叉式升降工作平臺
- 2023-2024全國初中物理競賽試題第06講聲音(原卷版)
- 2023年中國幼兒園辦托育情況研究報告-托育瞭望
- 管理會計學 第10版 課件 第1、2章 管理會計概論、成本性態(tài)與變動成本法
- 彌漫大細胞b淋巴瘤護理查房課件
- 血液運輸物流服務投標方案
- 本田供應商品質監(jiān)查1
- 開放系統(tǒng)10862人文英語(4)期末機考真題及答案
- GB/T 4957-2003非磁性基體金屬上非導電覆蓋層覆蓋層厚度測量渦流法
- GB/T 27806-2011環(huán)氧瀝青防腐涂料
- GB/T 12618.1-2006開口型平圓頭抽芯鉚釘10、11級
評論
0/150
提交評論