解析卷-北師大版9年級數學上冊期末測試卷必考附答案詳解_第1頁
解析卷-北師大版9年級數學上冊期末測試卷必考附答案詳解_第2頁
解析卷-北師大版9年級數學上冊期末測試卷必考附答案詳解_第3頁
解析卷-北師大版9年級數學上冊期末測試卷必考附答案詳解_第4頁
解析卷-北師大版9年級數學上冊期末測試卷必考附答案詳解_第5頁
已閱讀5頁,還剩27頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北師大版9年級數學上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、方程y2=-a有實數根的條件是(

)A.a≤0 B.a≥0 C.a>0 D.a為任何實數2、反比例函數圖象的兩個分支分別位于第一、三象限,則一次函數的圖象大致是(

)A. B.C. D.3、如圖,在正方形網格上有5個三角形(三角形的頂點均在格點上):①△ABC,②△ADE,③△AEF,④△AFH,⑤△AHG,在②至⑤中,與①相似的三角形是(

)A.②④ B.②⑤ C.③④ D.④⑤4、下列四組線段中,是成比例線段的是()A.0.5,3,2,10 B.3,4,6,2C.5,6,15,18 D.1.5,4,1.2,55、如圖,正方形紙板的一條對角線重直于地面,紙板上方的燈(看作一個點)與這條對角線所確定的平面垂直于紙板,在燈光照射下,正方形紙板在地面上形成的影子的形狀可以是(

)A. B. C. D.6、關于的一元二次方程的兩根應為(

)A. B., C. D.二、多選題(6小題,每小題2分,共計12分)1、不能說明△ABC∽△A’B’C’的條件是(

)A.或 B.且C.且 D.且2、如圖,已知等邊三角形ABC的邊長為2,DE是它的中位線.則下面四個結論中正確的有()A.DE=1 B.AB邊上的高為C.△CDE∽△CAB D.△CDE的面積與△CAB面積之比為1:43、下面一元二次方程的解法中,不正確的是(

)A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x兩邊同除以x,得x=14、下列關于矩形的說法中錯誤的是()A.矩形的對角線互相垂直且平分 B.矩形的對角線相等且互相平分C.對角線相等的四邊形是矩形 D.對角線互相平分的四邊形是矩形5、如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E、F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,以下結論正確的有(

)A.四邊形CFHE是菱形 B.EC平分∠DCHC.線段BF的取值范圍為3≤BF≤4 D.當點H與點A重合時,EF=6、如圖,在中,,,,將沿圖示中的虛線剪開,剪下的陰影三角形與原三角形不相似的是(

)A. B.C. D.第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、如圖,AB,CD相交于O點,△AOC∽△BOD,OC:OD=1:2,AC=5,則BD的長為______.2、若關于x的一元二次方程有兩個不相等的實數根,則m的值可以是____.(寫出一個即可)3、在數學活動課上,老師帶領數學小組測量大樹的高度.如圖,數學小組發(fā)現(xiàn)大樹離教學樓有5m,高1.4m的竹竿在水平地面的影子長1m,此時大樹的影子有一部分映在地面上,還有一部分映在教學樓的墻上,墻上的影子離為2m,那么這棵大樹高___________m.4、據統(tǒng)計,2021年第一季度宜賓市實現(xiàn)地區(qū)生產總值約652億元,若使該市第三季度實現(xiàn)地區(qū)生產總值960億元,設該市第二、三季度地區(qū)生產總值平均增長率為x,則可列方程__________.5、如圖,在Rt△ABC中,∠C=90°,AC=8cm,BC=2cm,點P在邊AC上,以2cm/s的速度從點A向點C移動,點Q在邊CB上,以1cm/s的速度從點C向點B移動.點P、Q同時出發(fā),且當一點移動到終點時,另一點也隨之停止,連接PQ,當△PQC的面積為3cm2時,P、Q運動的時間是_____秒.6、如圖,將矩形的四個角向內折起,恰好拼成一個無縫隙重疊的四邊形,若,,則邊的長是____.7、請寫出一個反比例函數的表達式,滿足條件當x>0時,y隨x的增大而增大,則此函數的表達式可以為_____.8、正方形ABCD的邊長為1,點P為對角線AC上任意一點,PE⊥AD,PF⊥CD,垂足分別是E,F(xiàn).則PE+PF=_____.四、解答題(6小題,每小題10分,共計60分)1、已知關于的方程有實根.(1)求的取值范圍;(2)設方程的兩個根分別是,,且,試求的值.2、(1)閱讀理解如圖,點,在反比例函數的圖象上,連接,取線段的中點.分別過點,,作軸的垂線,垂足為,,,交反比例函數的圖象于點.點,,的橫坐標分別為,,.小紅通過觀察反比例函數的圖象,并運用幾何知識得出結論:AE+BG=2CF,CF>DF,由此得出一個關于,,之間數量關系的命題:若,則______.(2)證明命題小東認為:可以通過“若,則”的思路證明上述命題.小晴認為:可以通過“若,,且,則”的思路證明上述命題.請你選擇一種方法證明(1)中的命題.3、已知圖中的曲線是反比例函數y=(m為常數)圖象的一支.(1)根據圖象位置,求m的取值范圍;(2)若該函數的圖象任取一點A,過A點作x軸的垂線,垂足為B,當△OAB的面積為4時,求m的值.4、如圖,在△ABC和△DCB中,AB=DC,∠A=∠D,AC、DB交于點M.(1)求證:△ABC≌△DCB;(2)作CN∥BD,BN∥AC,CN交BN于點N,四邊形BNCM是什么四邊形?請證明你的結論.5、如圖,在平面直角坐標系中,O為坐標原點,點A坐標為(3,0),四邊形OABC為平行四邊形,反比例函數y=(x>0)的圖象經過點C,與邊AB交于點D,若OC=2,tan∠AOC=1.(1)求反比例函數解析式;(2)點P(a,0)是x軸上一動點,求|PC-PD|最大時a的值;(3)連接CA,在反比例函數圖象上是否存在點M,平面內是否存在點N,使得四邊形CAMN為矩形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.6、如圖,在△ABC中,AB=AC,點P在BC上.(1)求作:△PCD,使點D在AC上,且△PCD∽△ABP;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)在(1)的條件下,若∠APC=2∠ABC,求證:PD//AB.-參考答案-一、單選題1、A【解析】【分析】根據平方的非負性可以得出﹣a≥0,再進行整理即可.【詳解】解:∵方程y2=﹣a有實數根,∴﹣a≥0(平方具有非負性),∴a≤0;故選:A.【考點】此題考查了直接開平方法解一元二次方程,關鍵是根據已知條件得出﹣a≥0.2、D【解析】【分析】根據題意可得,進而根據一次函數圖像的性質可得的圖象的大致情況.【詳解】反比例函數圖象的兩個分支分別位于第一、三象限,∴一次函數的圖象與y軸交于負半軸,且經過第一、三、四象限.觀察選項只有D選項符合.故選D【考點】本題考查了反比例函數的性質,一次函數圖像的性質,根據已知求得是解題的關鍵.3、A【解析】【分析】根據兩邊成比例夾角相等兩三角形相似即可判斷.【詳解】解:由題意:①②④中,∠ABC=∠ADE=∠AFH=135°,又∵,∴,,∴△ABC∽△ADE∽△HFA,故選:A.【考點】本題考查相似三角形的判定,解題的關鍵是理解題意,靈活運用所學知識解決問題.4、C【解析】【分析】根據各個選項中的數據可以判斷哪個選項中的四條線段不成比例,本題得以解決.【詳解】解:∵,故選項A中的線段不成比例,不符合題意;∵,故選項B中的線段不成比例,不符合題意;∵,故選項C中的線段成比例,符合題意;∵,故選項D中的線段不成比例,不符合題意,故選:C【考點】本題考查比例線段,解題的關鍵是明確題意,找出所求問題需要的條件.5、D【解析】【分析】因為中心投影物體的高和影長成比例,正確的區(qū)分中心投影和平行投影,依次分析選項即可找到符合題意的選項【詳解】因為正方形的對角線互相垂直,且一條對角線垂直地面,光源與對角線組成的平面垂直于地面,則有影子的對角線仍然互相垂直,且由于光源在平板的的上方,則上方的邊長影子會更長一些,故選D【考點】本題考查了中心投影的概念,應用,利用中心投影的特點,理解中心投影物體的高和影長成比例是解題的關鍵.6、B【解析】【分析】先把方程化為一般式,再計算判別式的值,然后利用求根公式解方程即可.【詳解】x2?3ax+a2=0,△=(?3a)2?4××a2=a2,x=.所以x1=a,x2=a.故答案選B.【考點】本題考查了解一元二次方程,解題的關鍵是根據公式法解一元二次方程.二、多選題1、ABD【解析】【分析】根據相似三角形的判定方法求解即可.【詳解】解:A、或,不能判定,符合題意;B、且,不能判定,符合題意;C、且,能判定,不符合題意;D、且,不能判定,符合題意.故選:ABD.【考點】此題考查了相似三角形的判定方法,解題的關鍵是熟練掌握相似三角形的判定方法.相似三角形的判定方法:兩邊對應成比例且夾角相等的兩個三角形相似;三邊對應成比例的兩個三角形相似;兩角對應相等的兩個三角形相似.2、ABCD【解析】【分析】根據圖形,利用三角形中位線定理,可得DE=1,A成立;AB邊上的高,可利用勾股定理求出等于,B成立;DE是△CAB的中位線,可得DE∥AB,利用平行線分線段成比例定理的推論,可得△CDE∽△CAB,C成立;由△CDE∽△CAB,且相似比等于1:2,那么它們的面積比等于相似比的平方,就等于1:4,D也成立.【詳解】解:∵DE是它的中位線,∴DE=AB=1,故A正確,∴DE∥AB,∴△CDE∽△CAB,故C正確,∴S△CDE:S△CAB=DE2:AB2=1:4,故D正確,∵等邊三角形的高=,故B正確.故選ABCD.【考點】本題利用了:1、三角形中位線的性質;2、相似三角形的判定:一條直線與三角形一邊平行,則它所截得三角形與原三角形相似;3、相似三角形的面積等于對應邊的比的平方;4、等邊三角形的高=邊長×sin60°.3、ACD【解析】【分析】各方程求出解,即可作出判斷.【詳解】解:A、方程整理得:x2-8x-5=0,這里a=1,b=-8,c=-5,∵△=64+20=84,∴,故選項A符合題意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故選項B不符合題意;C、方程整理得:x2+8x+4=0,解得:,故選項C符合題意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故選項D符合題意,故選:ACD.【考點】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關鍵.4、ACD【解析】【分析】根據矩形的性質得到:矩形的對角線相等且互相平分,根據矩形的判定:對角線相等且互相平分且相等的四邊形是矩形,進行逐一判斷即可.【詳解】A.矩形的對角線互相平分,且相等,但不一定互相垂直,說法錯誤,本選項符合題意;B.矩形的對角線相等且互相平分,說法正確,本選項不符合題意;C.對角線相等的四邊形不一定為矩形,例如等腰梯形對角線相等,但不是矩形,說法錯誤,本選項符合題意;D.對角線互相平分的四邊形為平行四邊形,不一定為矩形,說法錯誤,本選項符合題意;故選ACD.【考點】考查矩形的判定與性質,熟練掌握矩形的判定定理與性質定理是解決問題的關鍵.5、ACD【解析】【分析】先判斷出四邊形CFHE是平行四邊形,再根據翻折的性質可得CF=FH,然后根據鄰邊相等的平行四邊形是菱形證明即可判斷出A正確;根據菱形的對角線平分一組對角可得∠BCH=∠ECH,然后求出只有∠DCE=30°時EC平分∠DCH,即可判斷出B錯誤;點H與點A重合時,設BF=x,表示出AF=FC=8-x,利用勾股定理列出方程求解得到BF的最小值,點G與點D重合時,CF=CD,求出BF=4,然后寫出BF的取值范圍,即可判斷出C正確;過點F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,即可判斷出D正確.【詳解】解:∵FH與CG,EH與CF都是矩形ABCD的對邊AD、BC的一部分,∴FH∥CG,EH∥CF,∴四邊形CFHE是平行四邊形,由翻折的性質得,CF=FH,∴四邊形CFHE是菱形,故A正確;∵四邊形CFHE是菱形,∴∠BCH=∠ECH,∴只有∠DCE=30°時EC平分∠DCH,故B錯誤;點H與點A重合時,設BF=x,則AF=FC=8-x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8-x)2,解得x=3,點G與點D重合時,CF=CD=4,∴BF=4,∴線段BF的取值范圍為3≤BF≤4,故C正確;如圖,過點F作FM⊥AD于M,則ME=(8-3)-3=2,由勾股定理得,EF=,故D正確;故選ACD.【考點】本題考查了菱形的判定和性質,矩形的性質,翻折的性質,勾股定理,掌握知識點是解題關鍵.6、CD【解析】【分析】根據相似三角形的判定定理對各選項進行逐一判定即可.【詳解】解:A、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;B、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;C、兩三角形的對應邊不成比例,故兩三角形不相似,故本選項正確.D、,兩三角形對應邊不成比例,故兩三角形不相似,故本選項正確;故選:.【考點】本題考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此題的關鍵.三、填空題1、10【解析】【分析】根據相似三角形的對應邊的比相等列式計算即可.【詳解】∵△AOC∽△BOD,∴,即,解得:BD=10.故答案為10.【考點】本題考查了相似三角形的性質,掌握相似三角形的對應角相等,對應邊的比相等是解題的關鍵.2、0(答案不唯一)【解析】【分析】根據一元二次方程根的判別式求出的取值范圍,由此即可得出答案.【詳解】解:由題意得:此一元二次方程根的判別式,解得,則的值可以是0,故答案為:0(答案不唯一).【考點】本題考查了一元二次方程根的判別式,熟練掌握一元二次方程根的判別式是解題關鍵.3、9【解析】【分析】根據同一時刻影長與物高成比例,先求出CE,再求AB即可.【詳解】解:延長AD交BC延長線于E,根據同一時刻影長與物高成比例可得CE:CD=1:1.4,∵CD=2m,∴CE=m,∴BE=BC+CE=5+=m,∴BE:AB=1:1.4,∴AB=9m.故答案為:9.【考點】本題考查平行投影問題,掌握平行攝影的原理是同一時刻影長與物高成比例是解題關鍵.4、【解析】【分析】根據題意,第一季度地區(qū)生產總值平均增長率第三季度地區(qū)生產總值,按照數量關系列方程即可得解.【詳解】解:根據題意,第一季度地區(qū)生產總值平均增長率第三季度地區(qū)生產總值列方程得:,故答案為:.【考點】本題主要考查了增長率的實際問題,熟練掌握相關基本等量關系是解決本題的關鍵.5、1【解析】【分析】設P、Q運動的時間是秒,根據已知條件得到cm,cm,則cm,根據三角形面積公式列出方程,解方程即可求解.【詳解】解:設P、Q運動的時間是秒,則cm,cm,cm∵△PQC的面積為3cm2,∴,即,解得或(不合題意,舍去),∴當△PQC的面積為3cm2時,P、Q運動的時間是1秒.故答案為:1【考點】本題考查了一元二次方程應用——動點問題,三角形的面積,正確的理解題意是解題的關鍵.6、【解析】【分析】由折疊的性質和矩形的性質可得∠HEF=90°,EA=EB=3,證明△HNG≌△FME,求出HF,設AH=x,在△AEH,△BEF和△EFH中,利用勾股定理列出方程,求出x,即可得到EH.【詳解】解:∵四邊形ABCD是矩形,∴∠A=∠B=∠D=90°,由折疊可知:△EAH≌△EMH,△HNG≌△HDG,△FBE≌△FME,∴EA=EM,AH=MH,HD=HN,EB=EM,F(xiàn)B=FM,∠AEH=∠MEH,∠BEF=∠MEF,∠BME=∠B=90°,∠HNG=∠D=90°,∴EA=EB=AB=3,∵∠AEH+∠MEH+∠BEF+∠MEF=180°,∴2∠MEH+2∠MEF=180°,∴∠HEF=90°,同理可知:∠EHG=∠EFG=∠HGF=90°,∴四邊形EHGF是矩形,∴HG∥FE,HG=FE,∴∠GHN=∠EFM,在△HNG和△FME中,,∴△HNG≌△FME(AAS),∴HN=FM,∴HD=FM,∴HF=HM+FM=AH+HD=AD=10,設AH=x,則HD=FM=FB=10-x,∵,,,∴,即,解得:x=1或x=9(舍),∴AH=1,∴,故答案為:.【考點】本題考查了翻折變換,矩形的性質,勾股定理,全等三角形的判定和性質,利用勾股定理列出方程是本題的關鍵.7、答案不唯一,如【解析】【分析】依題意反比例函數中k0,即可寫出一個.【詳解】∵當時,隨的增大而增大,∴反比例函數中k0,故可寫出若干,如.【考點】此題主要考察反比例函數的圖像8、1【解析】【分析】證明四邊形DEPF是矩形得PE=DF,證明△PFC是等腰直角三角形得PF=CF便可求得結果.【詳解】解:∵四邊形ABCD是正方形,∴∠ADC=90°,∠ACD=,∵PE⊥AD,PF⊥CD,∴四邊形DEPF是矩形,∴PE=DF,∵∠ACD=45°,∠PFC=90°,∴PF=CF,∴PE+PF=DF+CF=CD=1,故答案為:1.【考點】本題主要考查了正方形的性質,矩形的性質與判定,等腰直角三角形的判定,關鍵是證明PE=DF,PF=CF.四、解答題1、(1);(2)不存在【解析】【分析】(1)根據根的判別式即可求出答案.(2)根據根與系數的關系即可求出答案.【詳解】解:(1)∵,,,∴,∴;(2)由題意可知:x1+x2=2,x1x2=,∵,∴,∴k=,∵,∴k=不符合題意,舍去,∴k的值不存在.【考點】本題考查了一元二次方程根的判別式,解題的關鍵是熟練運用根與系數的關系以及根的判別式,本題屬于基礎題型.2、(1);(2)證明見解析.【解析】【分析】(1)求出AE,BG,DF,利用AE+BG=2CF,可得.(2)利用求差法比較大小.【詳解】(1)∵,,,,,∴.(2)∵,∵,∴,∴,∴.【考點】本題考查反比例函數圖形上的點的坐標特征,反比例函數的圖象等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題.3、(1)m>5;(2)m=13.【解析】【分析】(1)由反比例函數圖象位于第一象限得到m﹣5大于0,即可求出m的范圍;(2)根據反比例函數系數k的幾何意義得出(m﹣5)=4,解得即可.【詳解】解:(1)∵這個反比例函數的圖象分布在第一、第三象限,∴m﹣5>0,解得m>5;(2)∵S△OAB=|k|,△OAB的面積為4,∴(m﹣5)=4,∴m=13.【考點】此題考查了反比例函數系數k的幾何意義,反比例函數的圖象與性質,根據系數k的幾何意義得出(m?5)=4是解題的關鍵.4、(1)證明見解析;(2)四邊形BNCM是菱形,證明見解析.【解析】【分析】(1)根據題意利用AAS可證明出△ABM和△DCM,然后根據全等三角形的性質得出∠MBC=∠MCB,最后利用AAS即可作出證明;(2)根據平行線的性質和題意,即可得出△MBC≌△NCB,根據全等三角形的性質即可作出證明.【詳解】如圖所示(1)在△ABM和△DCM中,,∴△ABM≌△DCM(AAS),∴BM=CM,∴∠MBC=∠MCB,在△ABC和△DCB中,,∴△ABC≌△DCB(AAS)(2)四邊形BNCM是菱形,其理由如下:∵CN∥BD,∴∠MBC=∠NCB,又∵BN∥AC,∴∠MCB=∠NBC,在△MBC和△NCB中,,∴△MBC≌△NCB(ASA),∴BM=CN,MC=NB,又∵BM=CM,∴BM=MC=CN=NB,∴四邊形BNCM是菱形.【考點】本題主要考查了全等三角形的性質和判定和菱形的判定,熟練運用相關的判定與性質是解題的關鍵.5、(1)(2)|PC?PD|最大時a的值為6(3)存在,點M的坐標為(,)【解析】【分析】(1)先確定出OE=CE=2,即可得出點C坐標,最后用待定系數法即可得出結論;(2)先求出OC解析式,由平行四邊形的性質可得BC=OA=3,BC∥OA,AB∥OC,利用待定系數法可求AB解析式,求出點D的坐標,再根據三角形關系可得出當點P,C,D三點共線時,|PC-PD|最大,求出直線CD的解析式,令y=0即可求解;(3)若四邊形CAMN為矩形,則△CAM是直角三角形且AC為一條直角邊,根據直角頂點需要分兩種情況,畫出圖形分別求解即可.(1)解:如圖1,過點C作CE⊥x軸于E,∴∠CEO=90°,∵tan∠AOC=1,∴∠COA=45°,∴∠OCE=45°,∵OC=2,∴OE=CE=2,∴C(2,2),∵點C在反比例函數圖象上,∴k=2×2=4,∴反比例函數解析式為y=;(2)解:∵點C(2,2),點O(0,0),∴OC解析式為:y=x,∵四邊形OABC是平行四邊形,點A坐標為(3,0),∴BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論