版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北師大版9年級數(shù)學上冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、直線不經過第二象限,則關于的方程實數(shù)解的個數(shù)是(
).A.0個 B.1個 C.2個 D.1個或2個2、如圖,菱形對角線交點與坐標原點重合,點,則點的坐標為(
)A. B. C. D.3、如圖1,點Q為菱形ABCD的邊BC上一點,將菱形ABCD沿直線AQ翻折,點B的對應點P落在BC的延長線上.已知動點M從點B出發(fā),在射線BC上以每秒1個單位長度運動.設點M運動的時間為x,△APM的面積為y.圖2為y關于x的函數(shù)圖象,則菱形ABCD的面積為(
)A.12 B.24 C.10 D.204、如下圖所示的幾何體從上面看到的圖形()A. B. C. D.5、如圖,一農戶要建一個矩形花圃,花圃的一邊利用長為12m的住房墻,另外三邊用25m長的籬笆圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,花圃面積為80m2,設與墻垂直的一邊長為xm,則可以列出關于x的方程是()A.x(26﹣2x)=80 B.x(24﹣2x)=80C.(x﹣1)(26﹣2x)=80 D.(x-1)(25﹣2x)=806、距考試還有20天的時間,為鼓舞干勁,老師要求班上每一名同學要給同組的其他同學寫一份拼搏進取的留言,小明所在的小組共寫了30份留言,該小組共有()A.7人 B.6人 C.5人 D.4人二、多選題(6小題,每小題2分,共計12分)1、如圖,在□ABCD中,CD=2AD,BE⊥AD于點E,F(xiàn)為DC的中點,連結EF,BF.下列結論正確的是(
)A.∠ABC=2∠ABF B.EF=BF C.S四邊形DEBC=2S△EFB D.∠CFE=4∠DEF2、如圖,在矩形ABCD中,對角線AC、BD相交于G,E為AD的中點,連接BE交AC于F,連接FD,若∠BFA=90°,則下列四對三角形中相似的為()A.△BEA與△ACD B.△FED與△DEB C.△CFD與△ABG D.△ADF與△EFD3、下列說法正確的是(
)A.“射擊運動員射擊一次,命中靶心”是隨機事件B.某彩票的中獎機會是1%,買100張一定會中獎C.拋擲一枚質地均勻的硬幣兩次,則兩次都是“正面朝上”的概率是D.某校有3200名學生,為了解學生最喜歡的課外體育運動項目,隨機抽取了200名學生,其中有85名學生表示最喜歡的項目是跳繩,估計該校最喜歡的課外體育運動項目為跳繩的有1360人4、下列關于x的方程的說法正確的是()A.一定有兩個實數(shù)根 B.可能只有一個實數(shù)根C.可能無實數(shù)根 D.當時,方程有兩個負實數(shù)根5、下列命題中的真命題是(
)A.矩形的對角線相等 B.對角線相等的四邊形是矩形C.菱形的對角線互相垂直平分 D.對角線互相垂直的四邊形是菱形6、下列各組圖形中相似的是(
)A.各有一個角是45°的兩個等腰三角形B.各有一個角是60°的兩個等腰三角形C.各有一個角是105°的兩個等腰三角形D.兩個等腰直角三角形第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、如圖,一塊飛鏢游戲板由大小相等的小等邊三角形構成,向游戲板隨機投擲一枚飛鏢(飛鏢每次都落在游戲板上),則擊中黑色區(qū)域的概率是____________.2、如圖,在一塊長為22m,寬為14m的矩形空地內修建三條寬度相等的小路(陰影部分),其余部分種植花草.若花草的種植面積為240m2,則小路的寬為________m.3、一菱形的對角線長分別為24cm和10cm,則此菱形的周長為________,面積為________.4、小明的身高為1.6,他在陽光下的影長為2,此時他旁邊的旗桿的影長為15,則旗桿的高度為_______.5、如圖,邊長為4的正方形的對稱中心是坐標原點O,軸,軸,反比例函數(shù)與的圖像均與正方形的邊相交,則圖中陰影部分的面積之和是________.6、如圖,在平行四邊形中,點在邊上,,連接交于點,則的面積與四邊形的面積之比為___
7、若正方形的對角線的長為4,則該正方形的面積為_________.8、正方形ABCD的邊長為1,點P為對角線AC上任意一點,PE⊥AD,PF⊥CD,垂足分別是E,F(xiàn).則PE+PF=_____.四、解答題(6小題,每小題10分,共計60分)1、解方程:(1)x2-x-2=0;(2)3x(x-2)=2-x.2、如圖,BF平行于正方形ADCD的對角線AC,點E在BF上,且AE=AC,CF∥AE,求∠BCF.3、已知關于的一元二次方程.(1)求證:方程總有兩個實數(shù)根;(2)若方程的兩個實數(shù)根都為正整數(shù),求這個方程的根.4、如圖,在平面直角坐標系中,的三個頂點坐標分別為,,.以原點O為位似中心,位似比為,在y軸的左側,畫出將放大后的,并寫出點的坐標______.5、解方程(1)(x+1)2﹣64=0(2)x2﹣4x+1=0(3)x2+2x-2=0(配方法)(4)x2-2x-8=06、如圖,在?ABCD中,對角線AC與BD相交于點O,點E,F(xiàn)分別為OB,OD的中點,延長AE至點G,使EG=AE,連接CG.(1)求證:△ABE≌△CDF;(2)當AB與AC滿足什么數(shù)量關系時,四邊形EGCF是矩形?請說明理由.-參考答案-一、單選題1、D【解析】【分析】根據(jù)直線不經過第二象限,得到,再分兩種情況判斷方程的解的情況.【詳解】∵直線不經過第二象限,∴,∵方程,當a=0時,方程為一元一次方程,故有一個解,當a<0時,方程為一元二次方程,∵?=,∴4-4a>0,∴方程有兩個不相等的實數(shù)根,故選:D.【考點】此題考查一次函數(shù)的性質:利用函數(shù)圖象經過的象限判斷字母的符號,方程的解的情況,注意易錯點是a的取值范圍,再分類討論.2、B【解析】【分析】根據(jù)菱形的中心對稱性,A、C坐標關于原點對稱,利用橫反縱也反的口訣求解即可.【詳解】∵菱形是中心對稱圖形,且對稱中心為原點,∴A、C坐標關于原點對稱,∴C的坐標為,故選C.【考點】本題考查了菱形的中心對稱性質,原點對稱,熟練掌握菱形的性質,關于原點對稱點的坐標特點是解題的關鍵.3、D【解析】【分析】由圖2,可知BP=6,S△ABP=12,由圖1翻折可知,AQ⊥BP,進而得出AQ=4,由勾股定理,可知BC=AB=5,菱形ABCD的面積為BC×AQ即可求出.【詳解】解:由圖2,得BP=6,S△ABP=12∴AQ=4由翻折可知,AQ⊥BP由勾股定理,得BC=AB==5∴菱形ABCD的面積為BC×AQ=5×4=20故選:D【考點】本題是一道幾何變換綜合題,解決本題主要用到勾股定理,翻折的性質,根據(jù)函數(shù)圖象找出幾何圖形中的對應關系是解決本題的關鍵.4、D【解析】【分析】該幾何體是下面一個長方體,上面是一個小的長方體,因此從上面看到的圖形是兩個長方形疊在一起.【詳解】解:從上面看到的圖形:故答案為:D.【考點】此題考查了從不同方向觀察物體和幾何體,考查學生的空間想象能力和抽象思維能力.5、A【解析】【分析】設與墻垂直的一邊長為xm,則與墻平行的一邊長為(26-2x)m,然后根據(jù)花圃面積為80m2列關于x的一元一次方程即可.【詳解】解:設與墻垂直的一邊長為xm,則與墻平行的一邊長為(26-2x)m由題意得:x(26-2x)=80.故答案為A.【考點】本題考查了根據(jù)題意列一元二次方程,理解題意、設出未知數(shù)、表示出相關的量、找到等量關系列方程是解答本題的關鍵.6、B【解析】【分析】設小組有x人,根據(jù)題意,得x(x-1)=30,解方程即可.【詳解】設小組有x人,根據(jù)題意,得x(x-1)=30,整理,得,解方程,得(舍去),故選B.【考點】本題考查了一元二次方程的應用,熟練掌握方程的應用是解題的關鍵.二、多選題1、ABC【解析】【分析】延長EF交BC的延長線于G,取AB的中點H連接FH.根據(jù)等邊對等角和平行線的性質可證得∠CBF=∠FBH,進而即可求證∠ABC=2∠ABF;根據(jù)“AAS”證得△DFE≌△FCG,易知FE=FG,進而可得∠EBG=90°,根據(jù)直角三角形斜邊中線定理即可求證BF=EF;根據(jù)全等三角形的性質可得S△DFE=S△CFG,進而可得S四邊形DEBC=S△EBG,進而即可求證S四邊形DEBC=S△EBG=2S△BEF;求證四邊形BCFH是平行四邊形,進而證得四邊形BCFH是菱形,根據(jù)菱形的性質可得∠BFC=∠BFH,進而根據(jù)等邊對等角和平行線的性質可得∠BFH=∠EFH=∠DEF,進而即可驗證結論∠CFE=4∠DEF.【詳解】如圖,延長EF交BC的延長線于G,取AB的中點H連接FH.∵四邊形ABCD是平行四邊形,∴AD=BC,AB=CD,∵CD=2AD,DF=FC,∴CF=AD=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故A選項正確;∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG(AAS),∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故B選項正確;∵△DFE≌△FCG,∴S△DFE=S△CFG,∴S四邊形DEBC=S△EBG,∵FE=FG,∴S四邊形DEBC=S△EBG=2S△BEF,故C選項正確;∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四邊形BCFH是平行四邊形,∵CF=BC,∴四邊形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,F(xiàn)H∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故D選項錯誤,故選:ABC.【考點】本題考查平行四邊形的性質和判定、菱形的判定和性質、直角三角形斜邊中線的性質、全等三角形的判定和性質、等腰三角形的性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題.2、ABCD【解析】【分析】根據(jù)判定三角形相似的條件對選項逐一進行判斷.【詳解】解:根據(jù)題意得:∠BAE=∠ADC=∠AFE=90°∴∠AEF+∠EAF=90°,∠DAC+∠ACD=90°∴∠AEF=∠ACD∴△BEA∽△ACD;∵∠AEB=∠FEA,∠AFE=∠EAB=90°,∴△AFE∽△BAE,∴,又∵AE=ED,∴而∠BED=∠BED,∴△FED∽△DEB;∵ABCD,∴∠BAC=∠GCD,∵∠ABE=∠DAF,∠EBD=∠EDF,且∠ABG=∠ABE+∠EBD,∴∠ABG=∠DAF+∠EDF=∠DFC;∵∠ABG=∠DFC,∠BAG=∠DCF,∴△CFD∽△ABG;∵△FED∽△DEB,∴∠EFD=∠EDB,∵AG=DG,∴∠DAF=∠ADG,∴∠DAF=∠EFD,∴△ADF∽△EFD.故選:ABCD.【考點】此題考查了相似三角形的判定:①有兩個對應角相等的三角形相似;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.3、ACD【解析】【分析】根據(jù)隨機事件的定義(隨機事件是指在一定條件下可能發(fā)生也可能不發(fā)生的事件)可判斷A;由于中獎的概率是等可能的,則買100張可能會中獎,可能不會中獎可判斷B;利用列舉法將所有可能列舉出來,求滿足條件的概率即可判斷C;根據(jù)計算公式列出算式,即可判斷D.【詳解】解:A、“射擊運動員射擊一次,命中靶心”是隨機事件,選項正確;B、由于中獎的概率是等可能的,則買100張可能會中獎,可能不會中獎,選項說法錯誤,不符合題意;C、拋擲一枚質地均勻的硬幣兩次,所有可能出現(xiàn)的結果有:(正,正),(正,反),(反,正),(反,反),則兩次都是“正面朝上”的概率是,選項正確;D、根據(jù)計算公式該項人數(shù)等于該項所占百分比乘以總人數(shù),,選項正確,符合題意.故選:ACD.【考點】本題主要考查隨機事件的定義,概率發(fā)生的可能性、求隨機事件的概率與求某項的人數(shù),根據(jù)等可能事件的概率公式求解是解題關鍵.4、BD【解析】【分析】直接利用方程根與系數(shù)的關系以及根的判別式分析求出即可.【詳解】解:當a=0時,方程整理為解得,∴選項B正確;故選項A錯誤;當時,方程是一元二次方程,∴∴此時的方程表兩個不相等的實數(shù)根,故選項C錯誤;若時,,∴當時,方程有兩個負實數(shù)根∴選項D正確,故選:BD【考點】此題主要考查了一元二次方程根的判別式和根與系數(shù)的關系,正確把握相關知識是解題關鍵.5、AC【解析】【分析】根據(jù)菱形的判定與性質,矩形的判定和性質即可進行判斷.【詳解】解:A、矩形的對角線相等,是真命題,符合題意;B、對角線相等的平行四邊形是矩形,是假命題,不符合題意;C、菱形的對角線互相垂直平分,是真命題,符合題意;D、對角線互相垂直平分的四邊形是菱形,是假命題,不符合題意;故選AC.【考點】本題考查了,矩形的判定,菱形的判定與性質,解題的關鍵是掌握所學的定理.6、BCD【解析】【分析】根據(jù)相似三角形的判定方法和等腰三角形的性質進行解答即可得.【詳解】解:A、沒有指明這個的角是頂角還是底角,則無法判定其相似,選項說法錯誤,不符合題意;B、有一個角為的等腰三角形是等邊三角形,根據(jù)三組對應邊的比相等的兩個三角形相似判定這兩個三角形相似,選項說法正確,符合題意;C、已知一個角為的等腰三角形,我們可以判定其為頂角,頂角相等且兩條腰對應成比例則這兩個三角形相似,選項說法正確,符合題意;D、兩個等腰直角三角形,可以根據(jù)兩組對應邊的比相等且相應的夾角相等的兩個三角形相似來判定這兩個三角形相似,選項說法正確,符合題意;故選BCD.【考點】本題考查了相似三角形,解題的根據(jù)是掌握相似三角形的判定和等腰三角形的性質.三、填空題1、【解析】【分析】根據(jù)幾何概率的求法:飛鏢落在陰影部分的概率就是陰影區(qū)域的面積與總面積的比值.【詳解】解:∵總面積為9個小等邊形的面積,其中陰影部分面積為3個小等邊形的面積,∴飛鏢落在陰影部分的概率是=,故答案為:.【考點】本題主要考查了概率求解問題,準確分析計算是解題的關鍵.2、2【解析】【分析】設小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,根據(jù)花草的種植面積為240m2,即可得出關于x的一元二次方程,解之取其符合題意的值即可得出結論.【詳解】解:設小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,依題意得:(22-x)(14-x)=240,整理得:x2-36x+68=0,解得:x1=2,x2=34(不合題意,舍去).故答案為:2.【考點】本題考查了一元二次方程的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.3、
52cm
120cm2【解析】【分析】根據(jù)菱形對角線互相平分且垂直得到邊長,從而計算出周長,再根據(jù)面積公式計算出面積.【詳解】解:∵菱形的對角線長分別為24cm和10cm,∴對角線的一半長分別為12cm和5cm,∴菱形的邊長為:=13cm,∴菱形的周長為:13×4=52cm,面積為:×10×24=120cm2.故答案為:52cm,120cm2.【考點】此題主要考查學生對菱形的性質的理解及運用,屬于基礎題,關鍵是掌握菱形的面積等于對角線乘積的一半.4、12【解析】【分析】設這根旗桿的高度為xm,利用某一時刻物體的高度與它的影長的比相等得到,然后利用比例性質求x即可.【詳解】設這根旗桿的高度為xm,根據(jù)題意得解得x=12(m),即這根旗桿的高度為12m.故答案為12.【考點】本題考查了相似三角形的應用:利用影長測量物體的高度;利用相似測量河的寬度(測量距離);借助標桿或直尺測量物體的高度.5、8【解析】【分析】根據(jù)題意,觀察圖形可得圖中的陰影部分的面積是圖中正方形面積的一半,且AB∥x軸,BC∥y軸,而正方形面積為16,由此可以求出陰影部分的面積.【詳解】解:根據(jù)題意:觀察圖形可得,圖中以B、D為頂點的小陰影部分,繞點O順時針旋轉90°,正好和以A、C為頂點的小空白部分重合,所以陰影的面積是圖中正方形面積的一半,且AB∥x軸,BC∥y軸,反比例函數(shù)與的圖象均與正方形ABCD的邊相交,而邊長為4的正方形面積為16,所以圖中的陰影部分的面積是8.故答案為:8.【考點】本題主要考查反比例函數(shù)圖象和性質的應用,關鍵是要分析出其圖象特點,再結合性質作答.6、【解析】【分析】由DE:EC=3:1,可得DF:FB=3:4,根據(jù)在高相等的情況下三角形面積比等于底邊的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面積與四邊形BCEF的面積的比值.【詳解】解:連接BE∵DE:EC=3:1∴設DE=3k,EC=k,則CD=4k∵ABCD是平行四邊形∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4∵DE:EC=3:1∴S△BDE:S△BEC=3:1設S△BDE=3a,S△BEC=a則S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴則△DEF的面積與四邊形BCEF的面積之比9:19故答案為:.【考點】本題考查了平行線分線段成比例,平行四邊形的性質,關鍵是運用在高相等的情況下三角形面積比等于底邊的比求三角形的面積比值.7、8【解析】【分析】根據(jù)正方形的面積等于對角線乘積的一半列式計算即可得解.【詳解】解:∵正方形的一條對角線的長為4,∴這個正方形的面積=×42=8.故答案為:8.【考點】本題考查了正方形的性質,熟練掌握正方形的面積的兩種求法是解題的關鍵.8、1【解析】【分析】證明四邊形DEPF是矩形得PE=DF,證明△PFC是等腰直角三角形得PF=CF便可求得結果.【詳解】解:∵四邊形ABCD是正方形,∴∠ADC=90°,∠ACD=,∵PE⊥AD,PF⊥CD,∴四邊形DEPF是矩形,∴PE=DF,∵∠ACD=45°,∠PFC=90°,∴PF=CF,∴PE+PF=DF+CF=CD=1,故答案為:1.【考點】本題主要考查了正方形的性質,矩形的性質與判定,等腰直角三角形的判定,關鍵是證明PE=DF,PF=CF.四、解答題1、(1)x1=2,x2=-1(2)x1=-,x2=2【解析】【分析】(1)利用因式分解法解方程;(2)利用因式分解法解方程;(1)解:x2-x-2=0,(x-2)(x+1)=0,x-2=0或x+1=0,x1=2,x2=-1.(2)解:3x(x-2)=2-x,3x(x-2)+(x-2)=0,(3x+1)(x-2)=0,3x+1=0或x-2=0,x1=-,x2=2.【考點】本題考查了因式分解法解一元二次方程:將方程的右邊化為零,把方程的左邊分解為兩個一次因式的積,令每個因式分別為零,解這兩個一元一次方程,它們的解就是原方程的解.2、105°【解析】【分析】首先過點A作AO⊥FB的延長線于點O,連接BD,交AC于點Q,易得四邊形AOBQ是正方形,四邊形ACFE是菱形,Rt△AOE中,AE=2AO,即可求得∠AEO=30°,繼而求得答案.【詳解】作AO⊥FB的延長線,BQ⊥AC∵BF∥AC,∴AO∥BQ且∠QAB=∠QBA=45°∴AO=BQ=AQ=AC∵AE=AC
∴AO=AE∴∠AEO=30°∵BF∥AC
∴∠CAE∠AEO=30°∵BF∥AC,CF∥AE
∴∠CFE∠CAE=30°∵BF∥AC
∴∠CBF∠BCA=45°∠BCF=180°-∠CBF-∠CFE=180°-45°-30°=105°【考點】本題考了正方形的性質、平行四邊形的判定與性質以及含30°的直角三角形的性質,解題關鍵是注意掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.3、證明見祥解;.【解析】【分析】(1)先求出判別式,再配方變?yōu)榧纯?;?)用十字相乘法可以求出根的表達式,方程的兩個實數(shù)根都為正整數(shù),列不等式組,即可得出m的值.【詳解】證明:∵是關于的一元二次方程,,∴此方程總有兩個實數(shù)根.解:∵,∴,∴,.∵方程的兩個實數(shù)根都為正整數(shù),,解得,,∴..【考點】本題考查了根的判別式,配方為平方式,根據(jù)方程的兩個實數(shù)根都為正整數(shù),列出不等式組,求出是解題的關鍵.4、圖見解析,【解析】【分析】由位似的性質進行作圖和求解,即可得到答案.【詳解】如圖,即為所求,故答案為:【考點】本題考查了位似三角形的性質,在直角坐標系中作位似圖形,以及考查了坐標與圖形,解題的關鍵是掌握位似的性質進行
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度齊齊哈爾誠譽物業(yè)管理有限公司招聘工作人員備考題庫參考答案詳解
- 2026年包頭輕工職業(yè)技術學院面向社會公開招聘工作人員9人的備考題庫及完整答案詳解一套
- 2026年彌勒市緊密型市域醫(yī)共體西一分院公開招聘合同制醫(yī)學檢驗科醫(yī)生的備考題庫及參考答案詳解
- 2026年麗水市蓮城物業(yè)管理有限公司招聘備考題庫完整參考答案詳解
- 2026年天津市靜海區(qū)北師大實驗學校合同制教師招聘81人備考題庫(僅限應屆畢業(yè)生)及完整答案詳解一套
- 2026年零售行業(yè)創(chuàng)新報告及智慧門店建設趨勢報告
- 東臺市2025江蘇鹽城市東臺市發(fā)展和改革委員會招聘勞務派遣工作人員2人筆試歷年參考題庫典型考點附帶答案詳解(3卷合一)
- 上海上海市第六人民醫(yī)院公開招聘79人筆試歷年典型考點題庫附帶答案詳解
- 上海上海對外經貿大學公開招聘工作人員筆試歷年典型考點題庫附帶答案詳解
- 上海2025年上海市文物交流中心招聘工作人員筆試歷年??键c試題專練附帶答案詳解
- 2025年西藏公開遴選公務員筆試試題及答案解析(綜合類)
- 揚州市梅嶺中學2026屆八年級數(shù)學第一學期期末綜合測試試題含解析
- 末梢血標本采集指南
- GB/T 46156-2025連續(xù)搬運設備安全規(guī)范通用規(guī)則
- AI賦能的虛擬仿真教學人才培養(yǎng)模式創(chuàng)新報告
- 數(shù)據(jù)管理能力成熟度評估模型(DCMM)評估師資格培訓試題及答案
- 工程變更簽證培訓課件
- 自然分娩的好處
- 教練技術一階段課件
- 國企跟投管理辦法
- 中考聽力說課課件
評論
0/150
提交評論