考點(diǎn)攻克黑龍江省五常市中考數(shù)學(xué)真題分類(勾股定理)匯編專題測評練習(xí)題_第1頁
考點(diǎn)攻克黑龍江省五常市中考數(shù)學(xué)真題分類(勾股定理)匯編專題測評練習(xí)題_第2頁
考點(diǎn)攻克黑龍江省五常市中考數(shù)學(xué)真題分類(勾股定理)匯編專題測評練習(xí)題_第3頁
考點(diǎn)攻克黑龍江省五常市中考數(shù)學(xué)真題分類(勾股定理)匯編專題測評練習(xí)題_第4頁
考點(diǎn)攻克黑龍江省五常市中考數(shù)學(xué)真題分類(勾股定理)匯編專題測評練習(xí)題_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江省五常市中考數(shù)學(xué)真題分類(勾股定理)匯編專題測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,長方形中,,,將此長方形折疊,使點(diǎn)與點(diǎn)重合,折痕為,則的長為(

)A.12 B.8 C.10 D.132、若直角三角形的三邊長分別為2,4,x,則x的可能值有(

)A.1個 B.2個 C.3個 D.4個3、《九章算術(shù)》中的“折竹抵地”問題:今有竹高一丈,末折抵地,去根六尺.問折高者幾何?意思是:一根竹子,原高一丈(一丈=10尺),一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部6尺遠(yuǎn),問折斷處離地面的高度是多少?設(shè)折斷處離地面的高度為尺,則可列方程為(

)A. B.C. D.4、如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在矩形內(nèi)的點(diǎn)F處,連接CF,則CF的長為()A. B. C. D.5、如圖,所有陰影四邊形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面積依次為2,4,3,則正方形D的面積為()A.9 B.8 C.27 D.456、如圖,在中,,cm,cm,點(diǎn)、分別在、邊上.現(xiàn)將沿翻折,使點(diǎn)落在點(diǎn)處.連接,則長度的最小值為(

)A.0 B.2 C.4 D.67、如圖,在中,,,,為邊上一動點(diǎn),于,于,為中點(diǎn),則的最小值為(

).A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,在中,,,,現(xiàn)將沿進(jìn)行翻折,使點(diǎn)剛好落在上,則__________.2、已知一直角三角形的兩條直角邊分別為6cm、8cm,則此直角三角形斜邊上的高為____.3、如圖,某農(nóng)舍的大門是一個木制的長方形柵欄,它的高為2m,寬為1.5m,現(xiàn)需要在相對的頂點(diǎn)間用一塊木板加固,則木板的長為________.4、如圖,臺風(fēng)過后,某希望小學(xué)的旗桿在離地某處斷裂,且旗桿頂部落在離旗桿底部8m處,已知旗桿原長16m,你能求出旗桿在離底部________m位置斷裂.5、一根直立于水中的蘆節(jié)(BD)高出水面(AC)2米,一陣風(fēng)吹來,蘆葦?shù)捻敹薉恰好到達(dá)水面的C處,且C到BD的距離AC=6米,水的深度(AB)為________米6、已知,在中,,,,則的面積為__.7、在Rt△ABC中,∠C=90°,AC=9,AB=15,則點(diǎn)C到AB的距離是_______.8、無蓋圓柱形杯子的展開圖如圖所示.將一根長為20cm的細(xì)木筷斜放在該杯子內(nèi),木筷露在杯子外面的部分至少有__________cm.三、解答題(7小題,每小題10分,共計(jì)70分)1、一架梯子長13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了7米到C,那么梯子的底端在水平方向滑動了幾米?2、一架云梯長25m,如圖所示斜靠在一而墻上,梯子底端C離墻7m.(1)這個梯子的頂端A距地面有多高?(2)如果梯子的頂端下滑了4m,那么梯子的底部在水平方向滑動了多少米?3、點(diǎn)P到y(tǒng)軸的距離與它到點(diǎn)A(-8,2)的距離都等于13,求點(diǎn)P的坐標(biāo)。4、如圖是“弦圖”的示意圖,“弦圖”最早是由三國時期的數(shù)學(xué)家趙爽在為《周髀算經(jīng)》作注時給出的,它標(biāo)志著中國古代的數(shù)學(xué)成就.它由4個全等的直角三角形與一個小正方形組成,恰好拼成一個大正方形,每個直角三角形的兩條直角邊分別為a、b,斜邊為c.請你運(yùn)用此圖形證明勾股定理:a2+b2=c2.5、設(shè)直角三角形的兩條直角邊長及斜邊上的高分別為a,b及h,求證:.6、有一只喜鵲在一棵高3米的小樹的樹梢上覓食,它的巢筑在距離該樹24米,高為14米的一棵大樹上,且巢離大樹頂部為1米,這時,它聽到巢中幼鳥求助的叫聲,立刻趕過去,如果它的飛行速度為每秒5米,那么它至少幾秒能趕回巢中?7、已知:在中,點(diǎn)在直線上,點(diǎn)在同一條直線上,且,【問題初探】(1)如圖1,若平分,求證:.請依據(jù)以下的簡易思維框圖,寫出完整的證明過程.【變式再探】(2)如圖2,若平分的外角,交的延長線于點(diǎn),問:和的數(shù)量關(guān)系發(fā)生改變了嗎?若改變,請寫出正確的結(jié)論,并證明;若不改變,請說明理由.【拓展運(yùn)用】(3)如圖3,在的條件下.若,求的長度.-參考答案-一、單選題1、D【解析】【分析】設(shè)BE為x,則AE為25-x,在由勾股定理有,即可求得BE=13.【詳解】設(shè)BE為x,則DE為x,AE為25-x∵四邊形為長方形∴∠EAB=90°∴在中由勾股定理有即化簡得解得故選:D.【考點(diǎn)】本題考查了折疊問題求折痕或其他邊長,主要可根據(jù)折疊前后兩圖形的全等條件,把某個直角三角形的三邊都用同一未知量表示出來,并根據(jù)勾股定理建立方程,進(jìn)而可以求解.2、B【解析】【詳解】分析:x可為斜邊也可為直角邊,因此解本題時要對x的取值進(jìn)行討論.解答:解:當(dāng)x為斜邊時,x2=22+42=20,所以x=2;當(dāng)4為斜邊時,x2=16-4=12,x=2.故選B.點(diǎn)評:本題考查了勾股定理的應(yīng)用,注意要分兩種情況討論.3、D【解析】【分析】先畫出三角形,根據(jù)勾股定理和題目設(shè)好的未知數(shù)列出方程.【詳解】解:如圖,根據(jù)題意,,,設(shè)折斷處離地面的高度是x尺,即,根據(jù)勾股定理,,即.故選:D.【考點(diǎn)】本題考查勾股定理的方程思想,解題的關(guān)鍵是根據(jù)題意利用勾股定理列出方程.4、C【解析】【分析】連接BF,(見詳解圖),由翻折變換可知,BF⊥AE,BE=EF,由點(diǎn)E是BC的中點(diǎn),可知BE=3,根據(jù)勾股定理即可求得AE;根據(jù)三角形的面積公式可求得BH,進(jìn)而可得到BF的長度;結(jié)合題意可知FE=BE=EC,進(jìn)而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點(diǎn)E為BC的中點(diǎn),∴BE=EC=EF=3根據(jù)勾股定理有AE=AB+BE代入數(shù)據(jù)求得AE=5根據(jù)三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數(shù)據(jù)求得CF=故答案為:【考點(diǎn)】此題考查矩形的性質(zhì)和折疊問題,解題關(guān)鍵在于利用好折疊的性質(zhì),對應(yīng)點(diǎn)的連線被折痕垂直平分.5、A【解析】【分析】設(shè)正方形D的面積為x,根據(jù)圖形得出方程2+4=x-3,求出即可.【詳解】∵正方形A、B、C的面積依次為2、4、3,∴根據(jù)圖形得:2+4=x?3.解得:x=9.故選A.【考點(diǎn)】本題考查了勾股定理,根據(jù)圖形推出四個正方形的關(guān)系是解決問題的關(guān)鍵.6、C【解析】【分析】當(dāng)H落在AB上,點(diǎn)D與B重合時,AH長度的值最小,根據(jù)勾股定理得到AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,于是得到結(jié)論.【詳解】解:當(dāng)H落在AB上,點(diǎn)D與B重合時,AH長度的值最小,∵∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,∴AH=AB-BH=4cm.故選:C.【考點(diǎn)】本題考查了翻折變換(折疊問題),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.7、D【解析】【分析】先根據(jù)矩形的判定得出AEPF是矩形,再根據(jù)矩形的性質(zhì)得出EF,AP互相平分,且EF=AP,再根據(jù)垂線段最短的性質(zhì)就可以得出AP⊥BC時,AP的值最小,即AM的值最小,根據(jù)面積關(guān)系建立等式求出其解即可.【詳解】解:如圖,連接AP,∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四邊形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交點(diǎn)就是M點(diǎn).∵當(dāng)AP的值最小時,AM的值就最小,∴當(dāng)AP⊥BC時,AP的值最小,即AM的值最?。逜P?BC=AB?AC,∴AP?BC=AB?AC,∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=,∴AM=.故選:D.【考點(diǎn)】本題考查了矩形的性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,三角形的面積公式的運(yùn)用,垂線段最短的性質(zhì)的運(yùn)用,解題的關(guān)鍵是求出AP的最小值.二、填空題1、【解析】【詳解】解:設(shè)CD=x,則AD=A′D=4-x.在直角三角形ABC中,BC==5.則A′C=BC-AB=BC-A′B=5-3=2.在直角三角形A′DC中:AD2+AC2=CD2.即:(4-x)2+22=x2.解得:x=.故答案為:2.52、4.8cm.【解析】【分析】根據(jù)勾股定理可求出斜邊.然后由于同一三角形面積一定,可列方程直接解答.【詳解】∵直角三角形的兩條直角邊分別為6cm,8cm,∴斜邊為=10(cm),設(shè)斜邊上的高為h,則直角三角形的面積為×6×8=×10h,解得:h=4.8cm,這個直角三角形斜邊上的高為4.8cm.故答案為4.8cm.【考點(diǎn)】此題考查勾股定理,解題關(guān)鍵在于列出方程.3、2.5m【解析】【詳解】設(shè)木棒的長為xm,根據(jù)勾股定理可得:x2=22+1.52,解得x=2.5.故木棒的長為2.5m.故答案為2.5m.4、6【解析】【分析】設(shè),則,在中,利用勾股定理列方程,即可求解.【詳解】解:如圖,由題意知,,,設(shè),則,在中,,即,解得,因此旗桿在離底部6m位置斷裂.故答案為:6.【考點(diǎn)】本題考查勾股定理的實(shí)際應(yīng)用,讀懂題意,根據(jù)勾股定理列出方程是解題的關(guān)鍵.5、8【解析】【分析】先設(shè)水深x米,則AB=x,則有BD=AD+AB=x+2,由題條件有BD=BC=x+2,又根據(jù)蘆節(jié)直立水面可知BD⊥AC,則在直角△ABC中,利用勾股定理即可求出x.【詳解】解:設(shè)水深x米,則AB=x,則有:BD=AD+AB=x+2,即有:BD=BC=x+2,根據(jù)蘆節(jié)直立水面,可知BD⊥AC,且AC=6,則在直角△ABC中:,即:,解得x=8,即水深8米,故答案為8.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,從現(xiàn)實(shí)圖形中抽象出勾股定理這一模型是解答本題的關(guān)鍵.6、2或14#14或2【解析】【分析】過點(diǎn)B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時,②△ABC是銳角三角形時,分別求出AC的長,即可求解.【詳解】解:過點(diǎn)作邊的高,中,,,,在中,,,①是鈍角三角形時,,;②是銳角三角形時,,,故答案為:2或14.【考點(diǎn)】本題考查了勾股定理,三角形面積求法,解題關(guān)鍵是分類討論思想.7、【解析】【分析】首先根據(jù)勾股定理求出直角邊BC的長,再根據(jù)三角形的面積為定值即可求出則點(diǎn)C到AB的距離【詳解】在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2∵AC=9,BC=12,∴AB=在Rt△ABC中,∠C=90°,則有AC2+BC2=AB2,∵AC=9,AB=15,∴BC==12,∵S△ABC=AC?BC=AB?h,∴h==故答案為【考點(diǎn)】本題考查了勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解題的關(guān)鍵8、5【解析】【分析】根據(jù)題意直接利用勾股定理得出杯子內(nèi)的筷子長度,進(jìn)而得出答案.【詳解】解:由題意可得:杯子內(nèi)的筷子長度為:=15,則木筷露在杯子外面的部分至少有:20?15=5(cm).故答案為5.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用,正確得出杯子內(nèi)筷子的長是解決問題的關(guān)鍵.三、解答題1、(1)12米;(2)7米【解析】【分析】(1)由題意易得AB=CD=13米,OB=5米,然后根據(jù)勾股定理可求解;(2)由題意得CO=5米,然后根據(jù)勾股定理可得求解.【詳解】解:(1)由題意得,AB=CD=13米,OB=5米,在Rt,由勾股定理得:AO2=AB2-OB2=132-52=169-25=144,解得AO=12米,答:這個梯子的頂端距地面有12米高;(2)由題意得,AC=7米,由(1)得AO=12米,∴CO=AO-AC=12-7=5米,在Rt,由勾股定理得:OD2=CD2-CO2=132-52=169-25=144,解得OD=12米∴BD=OD-OB=12-5=7米,答:梯子的底端在水平方向滑動了7米.【考點(diǎn)】本題主要考查勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.2、(1)這個梯子的頂端距地面有高;(2)梯子的底部在水平方向滑動了.【解析】【分析】(1)根據(jù)勾股定理即可求解;(2)先求出BD,再根據(jù)勾股定理即可求解.【詳解】解:(1)由題意可知:,;,在中,由勾股定理得:,∴,因此,這個梯子的頂端距地面有高.(2)由圖可知:AD=4m,,在中,由勾股定理得:,∴,∴.答:梯子的底部在水平方向滑動了.【考點(diǎn)】此題主要考查勾股定理的實(shí)際應(yīng)用,解題的關(guān)鍵是根據(jù)題意在直角三角形中,利用勾股定理進(jìn)行求解.3、或.【解析】【分析】由P到y(tǒng)軸的距離為13,可得P點(diǎn)橫坐標(biāo)為13或-13,設(shè)出P點(diǎn)坐標(biāo),然后利用兩點(diǎn)間的距離公式建立方程求解即可.【詳解】解:∵點(diǎn)P到y(tǒng)軸的距離為13,∴P點(diǎn)橫坐標(biāo)為13或-13當(dāng)P點(diǎn)橫坐標(biāo)為13時,設(shè)P(13,a)由點(diǎn)P到點(diǎn)A(-8,2)的距離等于13得:整理得,無解,故此種情況不存在;當(dāng)P點(diǎn)橫坐標(biāo)為-13時,設(shè)P(-13,a)同理可得整理得,解得或∴點(diǎn)P的坐標(biāo)為或.【考點(diǎn)】本題考查直角坐標(biāo)系中兩點(diǎn)間的距離公式與解一元二次方程,熟練掌握公式建立方程是解題的關(guān)鍵.4、見解析【解析】【分析】根據(jù)大正方形的面積=小正方形的面積+4個直角三角形的面積證明即可【詳解】解:由題意得大正方形面積,小正方形面積,4個小直角三角形的面積,∵大正方形的面積=小正方形的面積+4個直角三角形的面積,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論