云南昆明實驗中學7年級數(shù)學下冊第四章三角形定向訓練練習題(含答案解析)_第1頁
云南昆明實驗中學7年級數(shù)學下冊第四章三角形定向訓練練習題(含答案解析)_第2頁
云南昆明實驗中學7年級數(shù)學下冊第四章三角形定向訓練練習題(含答案解析)_第3頁
云南昆明實驗中學7年級數(shù)學下冊第四章三角形定向訓練練習題(含答案解析)_第4頁
云南昆明實驗中學7年級數(shù)學下冊第四章三角形定向訓練練習題(含答案解析)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南昆明實驗中學7年級數(shù)學下冊第四章三角形定向訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、已知三角形的兩邊長分別是3cm和7cm,則下列長度的線段中能作為第三邊的是()A.3cm B.4cm C.7cm D.10cm2、如圖,點C在∠AOB的OB邊上,用尺規(guī)作出了∠NCE=∠AOD,作圖痕跡中,弧FG是()A.以點C為圓心,OD為半徑的弧B.以點C為圓心,DM為半徑的弧C.以點E為圓心,OD為半徑的弧D.以點E為圓心,DM為半徑的弧3、以下列各組長度的線段為邊,能構成三角形的是()A.1cm,1cm,8cm B.3cm,3cm,6cmC.3cm,4cm,5cm D.3cm,2cm,1cm4、根據下列已知條件,不能畫出唯一的是()A.,, B.,,C.,, D.,,5、如圖,∠BAD=90°,AC平分∠BAD,CB=CD,則∠B與∠ADC滿足的數(shù)量關系為()A.∠B=∠ADC B.2∠B=∠ADCC.∠B+∠ADC=180° D.∠B+∠ADC=90°6、如圖,平分,,連接,并延長,分別交,于點,,則圖中共有全等三角形的組數(shù)為()A. B. C. D.7、如圖,,,,則下列結論:①;②;③;④.成立的是()A.①②③ B.①②④ C.②③④ D.①②③④8、滿足下列條件的兩個三角形不一定全等的是()A.周長相等的兩個三角形 B.有一腰和底邊對應相等的兩個等腰三角形C.三邊都對應相等的兩個三角形 D.兩條直角邊對應相等的兩個直角三角形9、定理:三角形的一個外角等于與它不相鄰的兩個內角的和.已知:如圖,∠ACD是△ABC的外角.求證:∠ACD=∠A+∠B.證法1:如圖,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器測量所得)又∵133°=70°+63°(計算所得)∴∠ACD=∠A+∠B(等量代換).證法2:如圖,∵∠A+∠B+∠ACB=180°(三角形內角和定理),又∵∠ACD+∠ACB=180°(平角定義),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代換).∴∠ACD=∠A+∠B(等式性質).下列說法正確的是()A.證法1用特殊到一般法證明了該定理B.證法1只要測量夠100個三角形進行驗證,就能證明該定理C.證法2還需證明其他形狀的三角形,該定理的證明才完整D.證法2用嚴謹?shù)耐评碜C明了該定理10、如圖,ABC的面積為18,AD平分∠BAC,且AD⊥BD于點D,則ADC的面積是()A.8 B.10 C.9 D.16第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,為△ABC的中線,為△的中線,為△的中線,……按此規(guī)律,為△的中線.若△ABC的面積為8,則△的面積為_______________.2、如圖,點C是線段AB的中點,.請你只添加一個條件,使得≌.(1)你添加的條件是______;(要求:不再添加輔助線,只需填一個答案即可)(2)依據所添條件,判定與全等的理由是______.3、如圖,三角形ABC的面積為1,,E為AC的中點,AD與BE相交于P,那么四邊形PDCE的面積為______.4、已知:如圖,AB=DB.只需添加一個條件即可證明.這個條件可以是______.(寫出一個即可).5、如圖,在長方形ABCD中,,.延長BC到點E,使,連結DE,動點P從點B出發(fā),以每秒2個單位長度的速度沿向終點A運動.設點P的運動時間為t秒,當t的值為______________時,和全等.6、如圖,一把直尺的一邊緣經過直角三角形的直角頂點,交斜邊于點;直尺的另一邊緣分別交、于點、,若,,則___________度.7、如圖,中,已知點D、E、F分別為BC、AD、CE的中點,設的面積為,的面積為,則______.8、如圖,Rt△ABC中,∠ACB=90°,AB=5,BC=3,將斜邊AB繞點A順時針旋轉90°至AB′,連接B'C,則△AB′C的面積為_____.9、如圖,在中,D、E分別為AC、BC邊上一點,AE與BD交于點F.已知,,且的面積為60平方厘米,則的面積為______平方厘米;如果把“”改為“”其余條件不變,則的面積為______平方厘米(用含n的代數(shù)式表示).10、如圖,PA=PB,請你添加一個適當?shù)臈l件:___________,使得△PAD≌△PBC.三、解答題(6小題,每小題10分,共計60分)1、如圖,四邊形中,,,于點.(1)如圖1,求證:;(2)如圖2,延長交的延長線于點,點在上,連接,且,求證:;(3)如圖3,在(2)的條件下,點在的延長線上,連接,交于點,連接,且,當,時,求的長.2、如圖1,AE與BD相交于點C,AC=EC,BC=DC.(1)求證:ABDE;(2)如圖2,過點C作PQ交AB于P,交DE于Q,求證:CP=CQ.(3)如圖3,若AB=4cm,點P從點A出發(fā),沿A→B→A方向以3cm/s的速度運動,點Q從點D出發(fā),沿D→E方向以1cm/s的速度運動,P、Q兩點同時出發(fā).當點P到達點A時,P、Q兩點同時停止運動.設點P的運動時間為t(s).連接PQ,當線段PQ經過點C時,直接寫出t的值為.3、已知∠ACD=90°,MN是過點A的直線,AC=DC,且DB⊥MN于點B,如圖易證BD+ABCB,過程如下:解:過點C作CE⊥CB于點C,與MN交于點E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵DB⊥MN,∴∠ABC+∠CBD=90°,CE⊥CB,∴∠ABC+∠CEA=90°,∴∠CBD=∠CEA.又∵AC=DC,∴△ACE≌△DCB(AAS),∴AE=DB,CE=CB,∴△ECB為等腰直角三角形,∴BECB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+ABCB.(1)當MN繞A旋轉到如圖(2)位置時,BD、AB、CB滿足什么樣關系式,請寫出你的猜想,并給予證明.(2)當MN繞A旋轉到如圖(3)位置時,BD、AB、CB滿足什么樣關系式,請直接寫出你的結論.4、已知三角形的兩邊長分別是4cm和9cm,如果第三邊長是奇數(shù),求第三邊的長5、如圖,點A,B,C,D在一條直線上,,,.求證:.6、如圖,在△ABC中,D為BC的中點,過D點的直線GF交AC于點F,交AC的平行線BG于點G,DE⊥GF,并交AB于點E,連接EG,EF.(1)求證:BG=CF.(2)請你猜想BE+CF與EF的大小關系,并說明理由.-參考答案-一、單選題1、C【分析】設三角形第三邊的長為xcm,再根據三角形的三邊關系求出x的取值范圍,找出符合條件的x的值即可.【詳解】解:設三角形的第三邊是xcm.則7-3<x<7+3.即4<x<10,四個選項中,只有選項C符合題意,故選:C.【點睛】本題主要考查了三角形三邊關系的應用.此類求三角形第三邊的范圍的題,實際上就是根據三角形三邊關系定理列出不等式,然后解不等式即可.2、D【分析】根據作一個角等于已知角的步驟即可得.【詳解】解:作圖痕跡中,弧FG是以點E為圓心,DM為半徑的弧,故選:D.【點睛】本題主要考查作圖-尺規(guī)作圖,解題的關鍵是熟練掌握作一個角等于已知角的尺規(guī)作圖步驟.3、C【分析】根據三角形的三邊關系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【詳解】解:A、1+1=2<8,不能組成三角形,故此選項不合題意;B、3+3=6,不能組成三角形,故此選項不符合題意;C、3+4=7>5,能組成三角形,故此選項符合題意;D、1+2=3,不能組成三角形,故此選項不合題意;故選:C.【點睛】本題考查了構成三角形的條件,掌握“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”是解題的關鍵.4、B【分析】根據三角形存在的條件去判斷.【詳解】∵,,,滿足ASA的要求,∴可以畫出唯一的三角形,A不符合題意;∵,,,∠A不是AB,BC的夾角,∴可以畫出多個三角形,B符合題意;∵,,,滿足SAS的要求,∴可以畫出唯一的三角形,C不符合題意;∵,,,AB最大,∴可以畫出唯一的三角形,D不符合題意;故選B.【點睛】本題考查了三角形的存在性,熟練掌握三角形全等的判定方法是解題的關鍵.5、C【分析】由題意在射線AD上截取AE=AB,連接CE,根據SAS不難證得△ABC≌△AEC,從而得BC=EC,∠B=∠AEC,可求得CD=CE,得∠CDE=∠CED,證得∠B=∠CDE,即可得出結果.【詳解】解:在射線AD上截取AE=AB,連接CE,如圖所示:∵∠BAD=90°,AC平分∠BAD,∴∠BAC=∠EAC,在△ABC與△AEC中,,∴△ABC≌△AEC(SAS),∴BC=EC,∠B=∠AEC,∵CB=CD,∴CD=CE,∴∠CDE=∠CED,∴∠B=∠CDE,∵∠ADC+∠CDE=180°,∴∠ADC+∠B=180°.故選:C.【點睛】本題主要考查全等三角形的判定與性質,解答的關鍵是作出適當?shù)妮o助線AE,CE.6、C【分析】求出∠BAD=∠CAD,根據SAS推出△ADB≌△ADC,根據全等三角形的性質得出∠B=∠C,∠ADB=∠ADC,求出∠ADE=∠ADF,根據ASA推出△AED≌△AFD,根據全等三角形的性質得出AE=AF,根據SAS推出△ABF≌△ACE,根據AAS推出△EDB≌△FDC即可.【詳解】解:圖中全等三角形的對數(shù)有4對,有△ADB≌△ADC,△ABF≌△ACE,△AED≌△AFD,△EDB≌△FDC,理由是:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ADB和△ADC中∴△ADB≌△ADC(SAS),∴∠B=∠C,∠ADB=∠ADC,∵∠EDB=∠FDC,∴∠ADB?∠EDB=∠ADC?∠FDC,∴∠ADE=∠ADF,在△AED和△AFD中∴△AED≌△AFD(ASA),∴AE=AF,在△ABF和△ACE中∴△ABF≌△ACE(SAS),∵AB=AC,AE=AF,∴BE=CF,在△EDB和△FDC中∴△EDB≌△FDC(AAS),故選:C.【點睛】本題考查了全等三角形的判定定理和性質定理,能綜合運用定理進行推理是解此題的關鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對應邊相等,對應角相等.7、B【分析】根據全等三角形的性質直接判定①②,則有,然后根據角的和差關系可判定③④.【詳解】解:∵,∴,故①②正確;∵,∴,故③錯誤,④正確,綜上所述:正確的有①②④;故選B.【點睛】本題主要考查全等三角形的性質,熟練掌握全等三角形的性質是解題的關鍵.8、A【分析】根據全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS,SAS對各選項進行一一判斷即可.【詳解】解:A、周長相等的兩個三角形不一定全等,符合題意;B、有一腰和底邊對應相等的兩個等腰三角形根據三邊對應相等判定定理可判定全等,不符合題意;C、三邊都對應相等的兩個三角形根據三邊對應相等判定定理可判定全等,不符合題意;D、兩條直角邊對應相等的兩個直角三角形根據SAS判定定理可判定全等,不符合題意.故選:A.【點睛】此題考查了全等三角形的判定方法,解題的關鍵是熟練掌握全等三角形的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).9、D【分析】利用測量的方法只能是驗證,用定理,定義,性質結合嚴密的邏輯推理推導新的結論才是證明,再逐一分析各選項即可得到答案.【詳解】解:證法一只是利用特殊值驗證三角形的一個外角等于與它不相鄰的兩個內角的和,證法2才是用嚴謹?shù)耐评碜C明了該定理,故A不符合題意,C不符合題意,D符合題意,證法1測量夠100個三角形進行驗證,也只是驗證,不能證明該定理,故B不符合題意;故選D【點睛】本題考查的是三角形的外角的性質的驗證與證明,理解驗證與證明的含義及證明的方法是解本題的關鍵.10、C【分析】延長BD交AC于點E,根據角平分線及垂直的性質可得:,,依據全等三角形的判定定理及性質可得:,,再根據三角形的面積公式可得:SΔABD=SΔADE,SΔBDC=S【詳解】解:如圖,延長BD交AC于點E,∵AD平分,,∴,,在和中,,∴,∴,∴SΔABD=S∴SΔADC故選:C.【點睛】題目主要考查全等三角形的判定和性質,角平分線的定義等,熟練掌握基礎知識,進行邏輯推理是解題關鍵.二、填空題1、【分析】根據三角形的中線性質,可得△的面積=,△的面積=,……,進而即可得到答案.【詳解】由題意得:△的面積=,△的面積=,……,△的面積==.故答案是:.【點睛】本題主要考查三角形的中線的性質,掌握三角形的中線把三角形的面積平分,是解題的關鍵.2、AD=CE(或∠D=∠E或∠ACD=∠B)(答案不唯一)SAS【分析】(1)由已知條件可得兩個三角形有一組對應邊相等,一組對應角相等,根據三角形全等的判定方法添加條件即可;(2)根據添加的條件,寫出判斷的理由即可.【詳解】解:(1)添加的條件是:AD=CE(或∠D=∠E或∠ACD=∠B)故答案為:AD=CE(或∠D=∠E或∠ACD=∠B)(2)若添加:AD=CE∵點C是線段AB的中點,∴AC=BC∵∴∴≌(SAS)故答案為:SAS【點睛】本題主要考查了添加條件判斷三角形全等,熟練掌握全等三角形的判斷方法是解答本題的關鍵.3、【分析】連接CP.設△CPE的面積是x,△CDP的面積是y.根據BD:DC=2:1,E為AC的中點,得△BDP的面積是2y,△APE的面積是x,進而得到△ABP的面積是4x.再根據△ABE的面積是△BCE的面積相等,得4x+x=2y+x+y,解得,再根據△ABC的面積是1即可求得x、y的值,從而求解.【詳解】解:連接CP,設△CPE的面積是x,△CDP的面積是y.∵BD:DC=2:1,E為AC的中點,∴△BDP的面積是2y,△APE的面積是x,∵BD:DC=2:1,CE:AC=1:2,∴△ABP的面積是4x.∴4x+x=2y+x+y,解得.又∵4x+x=,解得:x=,則則四邊形PDCE的面積為x+y=.故答案為:.【點睛】本題能夠根據三角形的面積公式求得三角形的面積之間的關系.等高的兩個三角形的面積比等于它們的底的比;等底的兩個三角形的面積比等于它們的高的比.4、AC=DC【分析】由題意可得,BC為公共邊,AB=DB,即添加一組邊對應相等,可證△ABC與△DBC全等.【詳解】解:∵AB=DB,BC=BC,添加AC=DC,∴在△ABC與△DBC中,,∴△ABC≌△DBC(SSS),故答案為:AC=DC.【點睛】本題考查了全等三角形的判定,靈活運用全等三角形的判定是本題的關鍵.5、1或7【分析】分兩種情況進行討論,根據題意得出BP=2t=2或AP=16-2t=2即可求得結果.【詳解】解:當點P在BC上時,∵AB=CD,∴當△ABP≌△DCE,得到BP=CE,由題意得:BP=2t=2,∴t=1,當P在AD上時,∵AB=CD,∴當△BAP≌△DCE,得到AP=CE,由題意得:AP=6+6-4﹣2t=2,解得t=7.∴當t的值為1或7秒時.△ABP和△DCE全等.故答案為:1或7.【點睛】本題考查了全等三角形的判定,解題的關鍵在于能夠利用分類討論的思想進行求解.6、20【分析】利用平行線的性質求出∠1,再利用三角形外角的性質求出∠DCB即可.【詳解】解:∵EF∥CD,∴,∵∠1是△DCB的外角,∴∠1-∠B=50°-30°=20o,故答案為:20.【點睛】本題考查了平行線的性質,三角形外角的性質等知識,解題的關鍵是熟練掌握基本知識.7、4【分析】利用三角形的中線的性質證明再證明從而可得答案.【詳解】解:點F為CE的中點,點E為AD的中點,故答案為:【點睛】本題考查的是與三角形的中線有關的面積的計算,掌握“三角形的中線把一個三角形的面積分為相等的兩部分”是解本題的關鍵.8、【分析】根據題意過點B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,則有S△AB'C=AC?B′H即可求得答案.【詳解】解:過點B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC?B′H=×4×4=8.故答案為:8.【點睛】本題主要考查三角形全等的判定與性質和旋轉的性質以及勾股定理,根據題意利用全等三角形的判定證明△ACB≌△B'HA是解決問題的關鍵.9、6【分析】連接CF,依據AD=CD,BE=2CE,且△ABC的面積為60平方厘米,即可得到S△BCD=S△ABC=30,S△ACE=S△ABC=20,設S△ADF=S△CDF=x,依據S△ACE=S△FEC+S△AFC,可得,解得x=6,即可得出△ADF的面積為6平方厘米;當BE=nCE時,運用同樣的方法即可得到△ADF的面積.【詳解】如圖,連接CF,∵AD=CD,BE=2CE,且△ABC的面積為60平方厘米,∴S△BCD=S△ABC=30,S△ACE=S△ABC=20,設S△ADF=S△CDF=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x)=,∵S△ACE=S△FEC+S△AFC,∴,解得x=6,即△ADF的面積為6平方厘米;當BE=nCE時,S△AEC=,設S△AFD=S△CFD=x,則S△BFC=S△BCD﹣S△FDC=30﹣x,S△FEC=S△BFC=(30﹣x),∵S△ACE=S△FEC+S△AFC,∴,解得,即△ADF的面積為平方厘米;故答案為:【點睛】本題主要考查了三角形的面積的計算,解決問題的關鍵是作輔助線,根據三角形之間的面積關系得出結論.解題時注意:三角形的中線將三角形分成面積相等的兩部分.10、∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC或AC=BD.【分析】已有∠P是公共角和邊PA=PB,根據全等三角全等的條件,利用AAS需要添加∠D=∠C,根據ASA需要添加∠PAD=∠PBC或∠DBC=∠CAD,根據邊角邊需要添加PD=PC或PC=PD.填入一個即可.【詳解】解:∵PA=PB,∠P是公共角,∴根據AAS可以添加∠D=∠C,,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠D=∠C,∴△PAD≌△PBC(AAS).根據ASA可以添加∠PAD=∠PBC,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠PAD=∠PBC,∴△PAD≌△PBC(ASA).根據ASA可以添加∠DBC=∠CAD,∴180°-∠DBC=180°-∠CAD,即∠PAD=∠PBC,在△PAD和△PBC中,∵PA=PB,∠P是公共角,∠PAD=∠PBC,∴△PAD≌△PBC(ASA).根據SAS可添加PD=PC在△PAD和△PBC中,∵PA=PB,∠P是公共角,PD=PC,∴△PAD≌△PBC(SAS).根據SAS可添加BD=AC,∵PA=PB,BD=AC,∴PA+AC=PB+BD即PC=PD,在△PAD和△PBC中,∵PA=PB,∠P是公共角,PD=PC,∴△PAD≌△PBC(SAS).故答案為:∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC或AC=BD.【點睛】本題考查三角形全等添加條件,掌握三角形全等判定方法與定理是解題關鍵.三、解答題1、(1)見解析;(2)見解析;(3)2【分析】(1)過點B作于點Q,根據AAS證明△得,再證明四邊形是矩形得BQ=CG,從而得出結論;(2)在GF上截取GH=GE,連接AH,證明AH=FH,GE=GH即可;(3)過點A作于點P,在FC上截取,連接,證明得,可證明AC是EH的垂直平分線,再證明和△得可求出,從而可得結論.【詳解】解:(1)證明:過點B作于點Q,如圖1∵又,∴△∴四邊形是矩形;(2)在GF上截取GH=GE,連接AH,如圖2,又(3)過點A作于點P,在FC上截取,連接,如圖3,由(1)、(2)知,,∵∴∵∴∴∴∠∵∴∠∴∵∴∠∴∴AC是EH的垂直平分線,∴∴又∵∴∴∠∴∠∵∠,∴∠∴∵∴∴∵∠∴,即∴∵,即∴在和中,AH=AM∠HAB=∠MAD∴△∴∴∴∴【點睛】本題考查的是全等三角形的判定和性質,掌握全等三角形的判定定理和性質定理是解題的關鍵.2、(1)見詳解;(2)見詳解;(3)1或2【分析】(1)由“SAS”可證△ABC≌△EDC,可得∠A=∠E,可證AB∥DE;(2)由“ASA”可證△DCQ≌△BCP,可得CP=CQ;(3)由全等三角形的性質可得DQ=BP,列出方程可求解.【詳解】解:(1)證明:在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),∴∠A=∠E,∴AB∥DE;(2)證明:∵AB∥DE,∴∠B=∠D,在△DCQ和△BCP中,,∴△DCQ≌△BCP(ASA),∴CP=CQ;(3)解:由(2)可知:當線段PQ經過點C時,△DCQ≌△BCP,可得DQ=BP,∴4﹣3t=t或3t﹣4=t,∴t=1或2.故答案為:1或2.【點睛】本題考查了全等三角形的判定和性質,掌握全等三角形的判定定理和性質定理是解本題的關鍵.3、(1)AB-BD=CB,證明見解析.(2)BD-AB=CB,證明見解析.【分析】(1)仿照圖(1)的解題過程即可解答.過點C作CE⊥CB于點C,與MN交于點E,根據同角(等角)的余角相等可證∠BCD=∠ACE及∠CAE=∠D,由ASA可證△ACE≌△DCB,然后由全等三角形的對應邊相等可得:AE=DB,CE=CB,從而確定△ECB為等腰直角三角形,由勾股定理可得:BE=CB,由BE=AB-AE,可得BE=AB-BD,即AB-BD=CB;(2)解題思路同(1),過點C作CE⊥CB于點C,與MN交于點E,根據等角的余角相等及等式的性質可證∠BCD=∠ACE及∠CAE=∠D,由ASA可證△ACE≌△DCB,然后由全等三角形的對應邊相等可得:AE=DB,CE=CB,從而確定△ECB為等腰直角三角形,由勾股定理可得:BE=CB,由BE=AE-AB,可得BE=BD-AB,即BD-AB=CB.【詳解】解:(1)AB-BD=CB.證明:如圖(2)過點C作CE⊥CB于點C,與MN交于點E,∵∠ACD=90°,∠ECB=90°,∴∠ACE=90°-∠DCE,∠BCD=90°-∠ECD,∴∠BCD=∠ACE.∵DB⊥MN,∴∠CAE=90°-∠AFC,∠D=90°-∠BFD,∵∠AFC=∠BFD,∴∠CAE=∠D,在△ACE和△DCB中,∴△ACE≌△DCB(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論