版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版七7年級下冊數(shù)學(xué)期末解答題復(fù)習(xí)(附答案)一、解答題1.如圖是一塊正方形紙片.(1)如圖1,若正方形紙片的面積為1dm2,則此正方形的對角線AC的長為dm.(2)若一圓的面積與這個正方形的面積都是2πcm2,設(shè)圓的周長為C圓,正方形的周長為C正,則C圓C正(填“=”或“<”或“>”號)(3)如圖2,若正方形的面積為16cm2,李明同學(xué)想沿這塊正方形邊的方向裁出一塊面積為12cm2的長方形紙片,使它的長和寬之比為3:2,他能裁出嗎?請說明理由?2.如圖,用兩個面積為的小正方形拼成一個大的正方形.(1)則大正方形的邊長是___________;(2)若沿著大正方形邊的方向裁出一個長方形,能否使裁出的長方形紙片的長寬之比為5:4,且面積為?3.如圖,陰影部分(正方形)的四個頂點在5×5的網(wǎng)格格點上.(1)請求出圖中陰影部分(正方形)的面積和邊長(2)若邊長的整數(shù)部分為,小數(shù)部分為,求的值.4.如圖,紙上有五個邊長為1的小正方形組成的圖形紙,我們可以把它剪開拼成一個正方形.(1)拼成的正方形的面積與邊長分別是多少?(2)如圖所示,以數(shù)軸的單位長度的線段為邊作一個直角三角形,以數(shù)軸的-1點為圓心,直角三角形的最大邊為半徑畫弧,交數(shù)軸正半軸于點A,那么點A表示的數(shù)是多少?點A表示的數(shù)的相反數(shù)是多少?(3)你能把十個小正方形組成的圖形紙,剪開并拼成正方形嗎?若能,請畫出示意圖,并求它的邊長5.求下圖的方格中陰影部分正方形面積與邊長.二、解答題6.如圖,直線HDGE,點A在直線HD上,點C在直線GE上,點B在直線HD、GE之間,∠DAB=120°.(1)如圖1,若∠BCG=40°,求∠ABC的度數(shù);(2)如圖2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比較∠B,∠F的大??;(3)如圖3,點P是線段AB上一點,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的數(shù)量關(guān)系,并說明理由.7.如圖1,//,點、分別在、上,點在直線、之間,且.(1)求的值;(2)如圖2,直線分別交、的角平分線于點、,直接寫出的值;(3)如圖3,在內(nèi),;在內(nèi),,直線分別交、分別于點、,且,直接寫出的值.8.已知,定點,分別在直線,上,在平行線,之間有一動點.(1)如圖1所示時,試問,,滿足怎樣的數(shù)量關(guān)系?并說明理由.(2)除了(1)的結(jié)論外,試問,,還可能滿足怎樣的數(shù)量關(guān)系?請畫圖并證明(3)當(dāng)滿足,且,分別平分和,①若,則__________°.②猜想與的數(shù)量關(guān)系.(直接寫出結(jié)論)9.已知:直線AB∥CD,M,N分別在直線AB,CD上,H為平面內(nèi)一點,連HM,HN.(1)如圖1,延長HN至G,∠BMH和∠GND的角平分線相交于點E.求證:2∠MEN﹣∠MHN=180°;(2)如圖2,∠BMH和∠HND的角平分線相交于點E.①請直接寫出∠MEN與∠MHN的數(shù)量關(guān)系:;②作MP平分∠AMH,NQ∥MP交ME的延長線于點Q,若∠H=140°,求∠ENQ的度數(shù).(可直接運用①中的結(jié)論)10.已知AB∥CD,∠ABE與∠CDE的角分線相交于點F.(1)如圖1,若BM、DM分別是∠ABF和∠CDF的角平分線,且∠BED=100°,求∠M的度數(shù);(2)如圖2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度數(shù);(3)若∠ABM=∠ABF,∠CDM=∠CDF,請直接寫出∠M與∠BED之間的數(shù)量關(guān)系三、解答題11.如圖1,由線段組成的圖形像英文字母,稱為“形”.(1)如圖1,形中,若,則______;(2)如圖2,連接形中兩點,若,試探求與的數(shù)量關(guān)系,并說明理由;(3)如圖3,在(2)的條件下,且的延長線與的延長線有交點,當(dāng)點在線段的延長線上從左向右移動的過程中,直接寫出與所有可能的數(shù)量關(guān)系.12.如圖1,E點在BC上,∠A=∠D,AB∥CD.(1)直接寫出∠ACB和∠BED的數(shù)量關(guān)系;(2)如圖2,BG平分∠ABE,與∠CDE的鄰補角∠EDF的平分線交于H點.若∠E比∠H大60°,求∠E;(3)保持(2)中所求的∠E不變,如圖3,BM平分∠ABE的鄰補角∠EBK,DN平分∠CDE,作BP∥DN,則∠PBM的度數(shù)是否改變?若不變,請求值;若改變,請說理由.13.如圖1,,E是、之間的一點.(1)判定,與之間的數(shù)量關(guān)系,并證明你的結(jié)論;(2)如圖2,若、的兩條平分線交于點F.直接寫出與之間的數(shù)量關(guān)系;(3)將圖2中的射線沿翻折交于點G得圖3,若的余角等于的補角,求的大?。?4.已知,交AC于點E,交AB于點F.(1)如圖1,若點D在邊BC上,①補全圖形;②求證:.(2)點G是線段AC上的一點,連接FG,DG.①若點G是線段AE的中點,請你在圖2中補全圖形,判斷,,之間的數(shù)量關(guān)系,并證明;②若點G是線段EC上的一點,請你直接寫出,,之間的數(shù)量關(guān)系.15.如圖1,在平面直角坐標(biāo)系中,,且滿足,過作軸于(1)求三角形的面積.(2)發(fā)過作交軸于,且分別平分,如圖2,若,求的度數(shù).(3)在軸上是否存在點,使得三角形和三角形的面積相等?若存在,求出點坐標(biāo);若不存在;請說明理由.四、解答題16.如圖①,將一副直角三角板放在同一條直線AB上,其中∠ONM=30°,∠OCD=45°.(1)將圖①中的三角板OMN沿BA的方向平移至圖②的位置,MN與CD相交于點E,求∠CEN的度數(shù);(2)將圖①中的三角板OMN繞點O按逆時針方向旋轉(zhuǎn),使∠BON=30°,如圖③,MN與CD相交于點E,求∠CEN的度數(shù);(3)將圖①中的三角板OMN繞點O按每秒30°的速度按逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,在第____________秒時,直線MN恰好與直線CD垂直.(直接寫出結(jié)果)17.【問題探究】如圖1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC與α、β之間有何數(shù)量關(guān)系?并說明理由;【問題遷移】如圖2,DF∥CE,點P在三角板AB邊上滑動,∠PCE=∠α,∠PDF=∠β.(1)當(dāng)點P在E、F兩點之間運動時,如果α=30°,β=40°,則∠DPC=°.(2)如果點P在E、F兩點外側(cè)運動時(點P與點A、B、E、F四點不重合),寫出∠DPC與α、β之間的數(shù)量關(guān)系,并說明理由.(圖1)(圖2)18.如果三角形的兩個內(nèi)角與滿足,那么我們稱這樣的三角形是“準(zhǔn)互余三角形”.(1)如圖1,在中,,是的角平分線,求證:是“準(zhǔn)互余三角形”;(2)關(guān)于“準(zhǔn)互余三角形”,有下列說法:①在中,若,,,則是“準(zhǔn)互余三角形”;②若是“準(zhǔn)互余三角形”,,,則;③“準(zhǔn)互余三角形”一定是鈍角三角形.其中正確的結(jié)論是___________(填寫所有正確說法的序號);(3)如圖2,,為直線上兩點,點在直線外,且.若是直線上一點,且是“準(zhǔn)互余三角形”,請直接寫出的度數(shù).19.如圖,,點A、B分別在直線MN、GH上,點O在直線MN、GH之間,若,.(1)=;(2)如圖2,點C、D是、角平分線上的兩點,且,求的度數(shù);(3)如圖3,點F是平面上的一點,連結(jié)FA、FB,E是射線FA上的一點,若,,且,求n的值.20.如圖①所示,在三角形紙片中,,,將紙片的一角折疊,使點落在內(nèi)的點處.(1)若,________.(2)如圖①,若各個角度不確定,試猜想,,之間的數(shù)量關(guān)系,直接寫出結(jié)論.②當(dāng)點落在四邊形外部時(如圖②),(1)中的猜想是否仍然成立?若成立,請說明理由,若不成立,,,之間又存在什么關(guān)系?請說明.(3)應(yīng)用:如圖③:把一個三角形的三個角向內(nèi)折疊之后,且三個頂點不重合,那么圖中的和是________.【參考答案】一、解答題1.(1);(2)<;(3)不能;理由見解析.【分析】(1)由正方形面積,易求得正方形邊長,再由勾股定理求對角線長;(2)由圓面積公式,和正方形面積可求周長,比較兩數(shù)大小可以采用比商法;(3)采解析:(1);(2)<;(3)不能;理由見解析.【分析】(1)由正方形面積,易求得正方形邊長,再由勾股定理求對角線長;(2)由圓面積公式,和正方形面積可求周長,比較兩數(shù)大小可以采用比商法;(3)采用方程思想求出長方形的長邊,與正方形邊長比較大小即可.【詳解】解:(1)由已知AB2=1,則AB=1,由勾股定理,AC=;故答案為:.(2)由圓面積公式,可得圓半徑為,周長為,正方形周長為4.;即C圓<C正;故答案為:<(3)不能;由已知設(shè)長方形長和寬為3xcm和2xcm∴長方形面積為:2x?3x=12解得x=∴長方形長邊為3>4∴他不能裁出.【點睛】本題主要考查了算術(shù)平方根在正方形、圓、長方形面積中的應(yīng)用,靈活的進行算術(shù)平方根的計算與無理數(shù)大小比較是解題的關(guān)鍵.2.(1);(2)不能剪出長寬之比為5:4,且面積為的大長方形,理由詳見解析【分析】(1)根據(jù)已知得到大正方形的面積為400,求出算術(shù)平方根即為大正方形的邊長;(2)設(shè)長方形紙片的長為,寬為,根據(jù)解析:(1);(2)不能剪出長寬之比為5:4,且面積為的大長方形,理由詳見解析【分析】(1)根據(jù)已知得到大正方形的面積為400,求出算術(shù)平方根即為大正方形的邊長;(2)設(shè)長方形紙片的長為,寬為,根據(jù)面積列得,求出,得到,由此判斷不能裁出符合條件的大正方形.【詳解】(1)∵用兩個面積為的小正方形拼成一個大的正方形,∴大正方形的面積為400,∴大正方形的邊長為故答案為:20cm;(2)設(shè)長方形紙片的長為,寬為,,解得:,,答:不能剪出長寬之比為5:4,且面積為的大長方形.【點睛】此題考查利用算術(shù)平方根解決實際問題,利用平方根解方程,正確理解題意是解題的關(guān)鍵.3.(1)S=13,邊長為;(2)6【詳解】分析:(1)、利用正方形的面積減去四個直角三角形的面積得出陰影部分的面積,從而得出正方形的邊長;(2)、根據(jù)無理數(shù)的估算得出a和b的值,然后得出答案.解析:(1)S=13,邊長為;(2)6【詳解】分析:(1)、利用正方形的面積減去四個直角三角形的面積得出陰影部分的面積,從而得出正方形的邊長;(2)、根據(jù)無理數(shù)的估算得出a和b的值,然后得出答案.詳解:解:(1)S=25-12=13,邊長為,(2)a=3,b=-3原式=9+-3-=6.點睛:本題主要考查的就是無理數(shù)的估算,屬于中等難度的題型.解決這個問題的關(guān)鍵就是根據(jù)正方形的面積得出邊長.4.(1)5;;(2);;(3)能,.【分析】(1)易得5個小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長.(2)求出斜邊長即可.(3)一共有10個小正解析:(1)5;;(2);;(3)能,.【分析】(1)易得5個小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術(shù)平方根即可為大正方形的邊長.(2)求出斜邊長即可.(3)一共有10個小正方形,那么組成的大正方形的面積為10,邊長為10的算術(shù)平方根,畫圖.【詳解】試題分析:解:(1)拼成的正方形的面積與原面積相等1×1×5=5,邊長為,如圖(1)(2)斜邊長=,故點A表示的數(shù)為:;點A表示的相反數(shù)為:(3)能,如圖拼成的正方形的面積與原面積相等1×1×10=10,邊長為.考點:1.作圖—應(yīng)用與設(shè)計作圖;2.圖形的剪拼.5.8;【分析】用大正方形的面積減去4個小直角三角形的面積可得到所求的正方形的面積為8,然后利用正方形面積公式求8的算術(shù)平方根即可.【詳解】解:正方形面積=4×4-4××2×2=8;正方形的邊解析:8;【分析】用大正方形的面積減去4個小直角三角形的面積可得到所求的正方形的面積為8,然后利用正方形面積公式求8的算術(shù)平方根即可.【詳解】解:正方形面積=4×4-4××2×2=8;正方形的邊長==.【點睛】本題考查了算術(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x叫做a的算術(shù)平方根.記為.二、解答題6.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由見解析.【分析】(1)過點B作BMHD,則HDGEBM,根據(jù)平行線的性質(zhì)求得∠ABM與∠CBM,便可求得最后結(jié)果;(2)過B作BPHDGE,過F作FQHDGE,由平行線的性質(zhì)得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分線的性質(zhì)和已知角的度數(shù)分別求得∠HAF,∠FCG,最后便可求得結(jié)果;(3)過P作PKHDGE,先由平行線的性質(zhì)證明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根據(jù)角平分線求得∠NPC與∠PCN,由后由三角形內(nèi)角和定理便可求得結(jié)果.【詳解】解:(1)過點B作BMHD,則HDGEBM,如圖1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)過B作BPHDGE,過F作FQHDGE,如圖2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)過P作PKHDGE,如圖3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=∠HAP+∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,即:∠N=90°﹣∠HAP.【點睛】本題考查了角平分線的定義,平行線性質(zhì)和判定:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用,理清各角度之間的關(guān)系是解題的關(guān)鍵,也是本題的難點.7.(1);(2)的值為40°;(3).【分析】(1)過點O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質(zhì)可求解;(2)過點M作MK∥AB,過點N作NH∥CD,由角平分線的定義可設(shè)∠BEM解析:(1);(2)的值為40°;(3).【分析】(1)過點O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質(zhì)可求解;(2)過點M作MK∥AB,過點N作NH∥CD,由角平分線的定義可設(shè)∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,進而求解;(3)設(shè)直線FK與EG交于點H,F(xiàn)K與AB交于點K,根據(jù)平行線的性質(zhì)即三角形外角的性質(zhì)及,可得,結(jié)合,可得即可得關(guān)于n的方程,計算可求解n值.【詳解】證明:過點O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:過點M作MK∥AB,過點N作NH∥CD,∵EM平分∠BEO,F(xiàn)N平分∠CFO,設(shè)∵∴∴x-y=40°,∵MK∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,故的值為40°;(3)如圖,設(shè)直線FK與EG交于點H,F(xiàn)K與AB交于點K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO內(nèi),∴,∵∴∴即∴解得.經(jīng)檢驗,符合題意,故答案為:.【點睛】本題主要考查平行線的性質(zhì),角平分線的定義,靈活運用平行線的性質(zhì)是解題的關(guān)鍵.8.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點是平行線,之間解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點是平行線,之間有一動點,因此需要對點的位置進行分類討論:如圖1,當(dāng)點在的左側(cè)時,,,滿足數(shù)量關(guān)系為:;(2)當(dāng)點在的右側(cè)時,,,滿足數(shù)量關(guān)系為:;(3)①若當(dāng)點在的左側(cè)時,;當(dāng)點在的右側(cè)時,可求得;②結(jié)合①可得,由,得出;可得,由,得出.【詳解】解:(1)如圖1,過點作,,,,,,;(2)如圖2,當(dāng)點在的右側(cè)時,,,滿足數(shù)量關(guān)系為:;過點作,,,,,,;(3)①如圖3,若當(dāng)點在的左側(cè)時,,,,分別平分和,,,;如圖4,當(dāng)點在的右側(cè)時,,,;故答案為:或30;②由①可知:,;,.綜合以上可得與的數(shù)量關(guān)系為:或.【點睛】本題主要考查了平行線的性質(zhì),平行公理和及推論等知識點,作輔助線后能求出各個角的度數(shù),是解此題的關(guān)鍵.9.(1)見解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)過點E作EP∥AB交MH于點Q,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補角和為180°,角與角之間的基本運算、等量代換等即解析:(1)見解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)過點E作EP∥AB交MH于點Q,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補角和為180°,角與角之間的基本運算、等量代換等即可得證.(2)①過點H作GI∥AB,利用(1)中結(jié)論2∠MEN﹣∠MHN=180°,利用平行線的性質(zhì)、角平分線性質(zhì)、鄰補角和為180°,角與角之間的基本運算、等量代換等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),進而用等量代換得出2∠MEN+∠MHN=360°.②過點H作HT∥MP,由①的結(jié)論得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行線性質(zhì)得∠ENQ+∠ENH+∠NHT=180°,由角平分線性質(zhì)及鄰補角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.繼續(xù)使用等量代換可得∠ENQ度數(shù).【詳解】解:(1)證明:過點E作EP∥AB交MH于點Q.如答圖1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=∠GND.(兩直線平行,內(nèi)錯角相等)∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:過點H作GI∥AB.如答圖2由(1)可得∠MEN=(∠BMH+∠HND),由圖可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案為:2∠MEN+∠MHN=360°.②:由①的結(jié)論得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.過點H作HT∥MP.如答圖2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(兩直線平行,同旁內(nèi)角互補).∵MP平分∠AMH,∴∠PMH=∠AMH=(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.∵∠ENH=∠HND.∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.∴∠ENQ+(HND+∠BMH)=130°.∴∠ENQ+∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【點睛】本題考查了平行線的性質(zhì),角平分線的性質(zhì),鄰補角,等量代換,角之間的數(shù)量關(guān)系運算,輔助線的作法,正確作出輔助線是解題的關(guān)鍵,本題綜合性較強.10.(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結(jié)MF,利用平行線的性質(zhì)可得∠ABE+∠CDE=260°,再利用角平分線的定義得到∠ABF+解析:(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結(jié)MF,利用平行線的性質(zhì)可得∠ABE+∠CDE=260°,再利用角平分線的定義得到∠ABF+∠CDF=130°,從而得到∠BFD的度數(shù),再根據(jù)角平分線的定義和三角形外角的性質(zhì)可求∠M的度數(shù);(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代換即可求解;(3)由(2)的方法可得到2n∠M+∠BED=360°.【詳解】解:(1)如圖1,作,,連結(jié),,,,,,,,,,和的角平分線相交于,,,、分別是和的角平分線,,,,;(2)如圖1,,,,,與兩個角的角平分線相交于點,,,,,,;(3)由(2)結(jié)論可得,,,則.【點睛】本題主要考查了平行線的性質(zhì)和四邊形的內(nèi)角和,關(guān)鍵在于掌握兩直線平行同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補的性質(zhì).三、解答題11.(1)50°;(2)∠A+∠C=30°+α,理由見解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(2)延長BA,DC交于E,解析:(1)50°;(2)∠A+∠C=30°+α,理由見解析;(3)∠A-∠DCM=30°+α或30°-α【分析】(1)過M作MN∥AB,由平行線的性質(zhì)即可求得∠M的值.(2)延長BA,DC交于E,應(yīng)用四邊形的內(nèi)角和定理與平角的定義即可解決問題.(3)分兩種情形分別求解即可;【詳解】解:(1)過M作MN∥AB,∵AB∥CD,∴AB∥MN∥CD,∴∠1=∠A,∠2=∠C,∴∠AMC=∠1+∠2=∠A+∠C=50°;故答案為:50°;(2)∠A+∠C=30°+α,延長BA,DC交于E,∵∠B+∠D=150°,∴∠E=30°,∵∠BAM+∠DCM=360°-(∠EAM+∠ECM)=360°-(360°-∠E-∠M)=30°+α;即∠A+∠C=30°+α;(3)①如下圖所示:延長BA、DC使之相交于點E,延長MC與BA的延長線相交于點F,∵∠B+∠D=150°,∠AMC=α,∴∠E=30°由三角形的內(nèi)外角之間的關(guān)系得:∠1=30°+∠2∠2=∠3+α∴∠1=30°+∠3+α∴∠1-∠3=30°+α即:∠A-∠C=30°+α.②如圖所示,210-∠A=(180°-∠DCM)+α,即∠A-∠DCM=30°-α.綜上所述,∠A-∠DCM=30°+α或30°-α.【點睛】本題考查了平行線的性質(zhì).解答該題時,通過作輔助線準(zhǔn)確作出輔助線l∥AB,利用平行線的性質(zhì)(兩直線平行內(nèi)錯角相等)將所求的角∠M與已知角∠A、∠C的數(shù)量關(guān)系聯(lián)系起來,從而求得∠M的度數(shù).12.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如圖1,延長DE交AB于點F,根據(jù)ABCD可得∠DFB=∠D,則∠DFB=∠A,可得ACDF,根據(jù)平行線的性質(zhì)得∠A解析:(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如圖1,延長DE交AB于點F,根據(jù)ABCD可得∠DFB=∠D,則∠DFB=∠A,可得ACDF,根據(jù)平行線的性質(zhì)得∠ACB+∠CEF=180°,由對頂角相等可得結(jié)論;(2)如圖2,作EMCD,HNCD,根據(jù)ABCD,可得ABEMHNCD,根據(jù)平行線的性質(zhì)得角之間的關(guān)系,再根據(jù)∠DEB比∠DHB大60°,列出等式即可求∠DEB的度數(shù);(3)如圖3,過點E作ESCD,設(shè)直線DF和直線BP相交于點G,根據(jù)平行線的性質(zhì)和角平分線定義可求∠PBM的度數(shù).【詳解】解:(1)如圖1,延長交于點,,,,,,,,故答案為:;(2)如圖2,作,,,,,,平分,,,,,,,平分,,,,,設(shè),,比大,,,解得.的度數(shù)為;(3)的度數(shù)不變,理由如下:如圖3,過點作,設(shè)直線和直線相交于點,平分,平分,,,,,,,,,由(2)可知:,,,,,,.【點睛】本題考查了平行線的性質(zhì),解決本題的關(guān)鍵是掌握平行線的性質(zhì).13.(1),見解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質(zhì)得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,解析:(1),見解析;(2);(3)60°【分析】(1)作EF//AB,如圖1,則EF//CD,利用平行線的性質(zhì)得∠1=∠BAE,∠2=∠CDE,從而得到∠BAE+∠CDE=∠AED;(2)如圖2,由(1)的結(jié)論得∠AFD=∠BAF+∠CDF,根據(jù)角平分線的定義得到∠BAF=∠BAE,∠CDF=∠CDE,則∠AFD=(∠BAE+∠CDE),加上(1)的結(jié)論得到∠AFD=∠AED;(3)由(1)的結(jié)論得∠AGD=∠BAF+∠CDG,利用折疊性質(zhì)得∠CDG=4∠CDF,再利用等量代換得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,從而可計算出∠BAE的度數(shù).【詳解】解:(1)理由如下:作,如圖1,,.,,;(2)如圖2,由(1)的結(jié)論得,、的兩條平分線交于點F,,,,,;(3)由(1)的結(jié)論得,而射線沿翻折交于點G,,,,,.【點睛】本題考查了平行線性質(zhì):兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,內(nèi)錯角相等.14.(1)①見解析;②;見解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據(jù)題意畫出圖形;②依據(jù)DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠解析:(1)①見解析;②;見解析(2)①∠AFG+∠EDG=∠DGF;②∠AFG-∠EDG=∠DGF【分析】(1)①根據(jù)題意畫出圖形;②依據(jù)DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,進而得出∠EDF=∠A;(2)①過G作GH∥AB,依據(jù)平行線的性質(zhì),即可得到∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②過G作GH∥AB,依據(jù)平行線的性質(zhì),即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【詳解】解:(1)①如圖,②∵DE∥AB,DF∥AC,∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,∴∠EDF=∠A;(2)①∠AFG+∠EDG=∠DGF.如圖2所示,過G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②∠AFG-∠EDG=∠DGF.如圖所示,過G作GH∥AB,∵AB∥DE,∴GH∥DE,∴∠AFG=∠FGH,∠EDG=∠DGH,∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.【點睛】本題考查了平行線的判定和性質(zhì):兩直線平行,內(nèi)錯角相等.正確的作出輔助線是解題的關(guān)鍵.15.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根據(jù)非負數(shù)的性質(zhì)得到a=?b,a?b+4=0,解得a=?2,b=2,則A(?2,0),B(2,0),C(2,2),即可計算出解析:(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根據(jù)非負數(shù)的性質(zhì)得到a=?b,a?b+4=0,解得a=?2,b=2,則A(?2,0),B(2,0),C(2,2),即可計算出三角形ABC的面積=4;(2)由于CB∥y軸,BD∥AC,則∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,過E作EF∥AC,則BD∥AC∥EF,然后利用角平分線的定義可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;(3)先根據(jù)待定系數(shù)法確定直線AC的解析式為y=x+1,則G點坐標(biāo)為(0,1),然后利用S△PAC=S△APG+S△CPG進行計算.【詳解】解:(1)由題意知:a=?b,a?b+4=0,解得:a=?2,b=2,∴A(?2,0),B(2,0),C(2,2),∴S△ABC=;(2)∵CB∥y軸,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,過E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分別平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED=∠1+∠2=×90°=45°;(3)存在.理由如下:設(shè)P點坐標(biāo)為(0,t),直線AC的解析式為y=kx+b,把A(?2,0)、C(2,2)代入得:,解得,∴直線AC的解析式為y=x+1,∴G點坐標(biāo)為(0,1),∴S△PAC=S△APG+S△CPG=|t?1|?2+|t?1|?2=4,解得t=3或?1,∴P點坐標(biāo)為(0,3)或(0,?1).【點睛】本題考查了絕對值、平方的非負性,平行線的判定與性質(zhì):內(nèi)錯角相等,兩直線平行;同旁內(nèi)角互補,兩直線平行;兩直線平行,內(nèi)錯角相等.四、解答題16.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內(nèi)角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內(nèi)角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內(nèi)角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據(jù)兩直線平行,同旁內(nèi)角互補即可求出∠CEN的度數(shù).(3)畫出圖形,求出在MN⊥CD時的旋轉(zhuǎn)角,再除以30°即得結(jié)果.【詳解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如圖,MN⊥CD時,旋轉(zhuǎn)角為360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒時,直線MN恰好與直線CD垂直.【點睛】本題以學(xué)生熟悉的三角板為載體,考查了三角形的內(nèi)角和、平行線的判定和性質(zhì)、垂直的定義和旋轉(zhuǎn)的性質(zhì),前兩小題難度不大,難點是第(3)小題,解題的關(guān)鍵是畫出適合題意的幾何圖形,弄清求旋轉(zhuǎn)角的思路和方法,本題的第一種情況是將旋轉(zhuǎn)角∠DOM放在四邊形DOMF中,用四邊形內(nèi)角和求解,第二種情況是用周角減去∠DOM的度數(shù).17.∠DPC=α+β,理由見解析;(1)70;(2)∠DPC=α–β,理由見解析.【解析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由見解析;(1)70;(2)∠DPC=α–β,理由見解析.【解析】(1)過P作PE∥AD交CD于E,推出AD∥PE∥BC,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成圖形,根據(jù)平行線的性質(zhì)得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【問題探究】解:∠DPC=α+β如圖,過P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【問題遷移】(1)70(圖1)(圖2)(2)如圖1,∠DPC=β-α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β-α如圖2,∠DPC=α-β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α-β18.(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個判斷即可;(3)根據(jù)“準(zhǔn)互余三角解析:(1)見解析;(2)①③;(3)∠APB的度數(shù)是10°或20°或40°或110°【分析】(1)由和是的角平分線,證明即可;(2)根據(jù)“準(zhǔn)互余三角形”的定義逐個判斷即可;(3)根據(jù)“準(zhǔn)互余三角形”的定義,分類討論:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形內(nèi)角和定理和外角的性質(zhì)結(jié)合“準(zhǔn)互余三角形”的定義,即可求出答案.【詳解】(1)證明:∵在中,,∴,∵BD是的角平分線,∴,∴,∴是“準(zhǔn)互余三角形”;(2)①∵,∴,∴是“準(zhǔn)互余三角形”,故①正確;②∵,,∴,∴不是“準(zhǔn)互余三角形”,故②錯誤;③設(shè)三角形的三個內(nèi)角分別為,且,∵三角形是“準(zhǔn)互余三角形”,∴或,∴,∴,∴“準(zhǔn)互余三角形”一定是鈍角三角形,故③正確;綜上所述,①③正確,故答案為:①③;(3)∠APB的度數(shù)是10°或20°或40°或110°;如圖①,當(dāng)2∠A+∠ABC=90°時,△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如圖②,當(dāng)∠A+2∠APB=90°時,△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如圖③,當(dāng)2∠APB+∠ABC=90°時,△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠APB=20°;如圖④,當(dāng)2∠A+∠APB=90°時,△ABP是“準(zhǔn)直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;綜上,∠APB的度數(shù)是10°或20°或40°或110°時,是“準(zhǔn)互余三角形”.【點睛】本題是三角形綜合題,考查了三角形內(nèi)角和定理,三角形的外角的性質(zhì),解題關(guān)鍵是理解題意,根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 包裝生產(chǎn)管理規(guī)章制度
- 安全生產(chǎn)日管控制度
- 2026年安陽市北關(guān)區(qū)人社局招聘社區(qū)人社服務(wù)專員25名備考考試試題附答案解析
- 2026廣東惠州博羅縣惠博小學(xué)小學(xué)數(shù)學(xué)教師招聘1人備考考試題庫附答案解析
- 2026春季“夢想靠岸”招商銀行沈陽分行校園招聘參考考試題庫附答案解析
- 2026年玻璃廠爆炸事故應(yīng)急救援預(yù)案演練方案
- 監(jiān)獄的考試題目及答案
- 工商銀行張家界市2025秋招筆試價值觀測評題專練及答案
- 2026廣東陽江市陽春市統(tǒng)計局招聘合同制工作人員1人備考考試題庫附答案解析
- 水務(wù)安全生產(chǎn)檢查制度
- 棄土場規(guī)范規(guī)章制度
- 2026年水下機器人勘探報告及未來五至十年深海資源報告
- 安徽省蕪湖市鳩江區(qū)2024-2025學(xué)年高一上學(xué)期期末考試生物試卷
- 2025年對中國汽車行業(yè)深度變革的觀察與思考報告
- 雙重預(yù)防體系建設(shè)自評報告模板
- 福建省泉州市晉江市2024-2025學(xué)年八年級上學(xué)期1月期末考試英語試題(含答案無聽力音頻及原文)
- 專題五 以新發(fā)展理念引領(lǐng)高質(zhì)量發(fā)展
- GB/T 22417-2008叉車貨叉叉套和伸縮式貨叉技術(shù)性能和強度要求
- GB/T 20145-2006燈和燈系統(tǒng)的光生物安全性
- GB/T 1.1-2009標(biāo)準(zhǔn)化工作導(dǎo)則 第1部分:標(biāo)準(zhǔn)的結(jié)構(gòu)和編寫
- 長興中學(xué)提前招生試卷
評論
0/150
提交評論