版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》專題攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,已知菱形ABCD的對角線AC,BD的長分別為6,8,AE⊥BC,垂足為點E,則AE的長是()A.5 B.2 C. D.2、如圖,矩形OABC的邊OA長為2,邊AB長為1,OA在數(shù)軸上,以原點O為圓心,對角線OB的長為半徑畫弧,交正半軸于一點,則這個點表示的實數(shù)是()A.2.5 B.2 C. D.3、如圖,菱形ABCD的邊長為6cm,∠BAD=60°,將該菱形沿AC方向平移2cm得到四邊形A′B′C′D′,A′D′交CD于點E,則點E到AC的距離為()A.1 B. C..2 D.24、已知菱形的邊長為6,一個內(nèi)角為60°,則菱形較長的對角線長是()A. B. C.3 D.65、如圖,已知四邊形ABCD和四邊形BCEF均為平行四邊形,∠D=60°,連接AF,并延長交BE于點P,若AP⊥BE,AB=3,BC=2,AF=1,則BE的長為()A.5 B.2 C.2 D.3第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、在四邊形ABCD中,AB=BC=CD=DA=5cm,對角線AC,BD相交于點O,且AC=8cm,則四邊形ABCD的面積為______cm2.2、如圖,菱形ABCD的兩條對角線長分別為AC=6,BD=8,點P是BC邊上的一動點,則AP的最小值為__.3、如圖,在正方形ABCD中,點M,N為CD,BC上的點,且DM=CN,AM與DN交于點P,連接AN,點Q為AN中點,連接PQ,若AB=10,DM=4,則PQ的長為__________________.4、如圖,在?ABCD中,BC=3,CD=4,點E是CD邊上的中點,將△BCE沿BE翻折得△BGE,連接AE,A、G、E在同一直線上,則AG=______,點G到AB的距離為______.5、如圖,四邊形AOBC是正方形,曲線CP1P2P3???叫做“正方形的漸開線”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圓心依次按點A,O,B,C循環(huán),點A的坐標(biāo)為(2,0),按此規(guī)律進行下去,則點P2021的坐標(biāo)為_____.三、解答題(5小題,每小題10分,共計50分)1、如圖:已知△BCD是等腰直角三角形,且∠DCB=90°,過點D作AD∥BC,使AD=BC,在AD上取一點E,連結(jié)CE,點B關(guān)于CE的對稱點為B1,連結(jié)B1D,并延長B1D交BA的延長線于點F,延長CE交B1F于點G,連結(jié)BG.(1)求證:∠CBG=∠CDB1;(2)若AE=DE,BC=10,求BG長;(3)在(2)的條件下,H為直線BG上一點,使△HCG為等腰三角形,則所有滿足要求的BH的長是.(直接寫出答案)2、(1)如圖a,矩形ABCD的對角線AC、BD交于點O,過點D作DP∥OC,且DP=OC,連接CP,判斷四邊形CODP的形狀并說明理由.
(2)如圖b,如果題目中的矩形變?yōu)榱庑?,結(jié)論應(yīng)變?yōu)槭裁??說明理由.(3)如圖c,如果題目中的矩形變?yōu)檎叫?,結(jié)論又應(yīng)變?yōu)槭裁??說明理由.3、如圖,將□ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F,連接AC、BE.(1)求證:四邊形ABEC是平行四邊形;(2)若∠AFC=2∠ADC,求證:四邊形ABEC是矩形.4、在菱形ABCD中,∠ABC=60°,P是直線BD上一動點,以AP為邊向右側(cè)作等邊APE(A,P,E按逆時針排列),點E的位置隨點P的位置變化而變化.(1)如圖1,當(dāng)點P在線段BD上,且點E在菱形ABCD內(nèi)部或邊上時,連接CE,則BP與CE的數(shù)量關(guān)系是,BC與CE的位置關(guān)系是;(2)如圖2,當(dāng)點P在線段BD上,且點E在菱形ABCD外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,請說明理由;(3)當(dāng)點P在直線BD上時,其他條件不變,連接BE.若AB=2,BE=2,請直接寫出APE的面積.5、如圖,在銳角△ABC內(nèi)部作出一個菱形ADEF,使∠A為菱形的一個內(nèi)角,頂點D、E、F分別落在AB、BC、CA邊上.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)-參考答案-一、單選題1、D【解析】【分析】根據(jù)菱形的性質(zhì)得出BO、CO的長,在Rt△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】解:∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=,故選:D.【點睛】此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.2、D【解析】【分析】利用矩形的性質(zhì),求證明,進而在中利用勾股定理求出的長度,弧長就是的長度,利用數(shù)軸上的點表示,求出弧與數(shù)軸交點表示的實數(shù)即可.【詳解】解:四邊形OABC是矩形,,在中,由勾股定理可知:,,弧長為,故在數(shù)軸上表示的數(shù)為,故選:.【點睛】本題主要是考查了矩形的性質(zhì)、勾股定理解三角形以及數(shù)軸上的點的表示,熟練利用矩形性質(zhì),得到直角三角形,然后通過勾股定理求邊長,是解決該類問題的關(guān)鍵.3、C【解析】【分析】根據(jù)題意連接BD,過點E作EF⊥AC于點F,根據(jù)菱形的性質(zhì)可以證明三角形ABD是等邊三角形,根據(jù)平移的性質(zhì)可得AD∥A′E,可得,,進而求出A′E,再利用30度角所對直角邊等于斜邊的一半即可得出結(jié)論.【詳解】解:如圖,連接BD,過點E作EF⊥AC于點F,∵四邊形ABCD是菱形,∴AD=AB,BD⊥AC,∵∠BAD=60°,∴三角形ABD是等邊三角形,∵菱形ABCD的邊長為6cm,∴AD=AB=BD=6cm,∴AG=GC=3(cm),∴AC=6(cm),∵AA′=2(cm),∴A′C=4(cm),∵AD∥A′E,∴,∴,∴A′E=4(cm),∵∠EA′F=∠DAC=∠DAB=30°,∴EF=A′E=2(cm).故選:C.【點睛】本題考查菱形的性質(zhì)以及等邊三角形的判定與性質(zhì)和平移的性質(zhì),解決本題的關(guān)鍵是掌握菱形的性質(zhì).4、B【解析】【分析】根據(jù)一個內(nèi)角為60°可以判斷較短的對角線與兩鄰邊構(gòu)成等邊三角形,求出較長的對角線的一半,再乘以2即可得解.【詳解】解:如圖,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等邊三角形,菱形的邊長為6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形較長的對角線長BD是:2×3=6.故選:B.【點睛】本題考查了菱形的性質(zhì)和勾股定理,等邊三角形的判定,解題關(guān)鍵是熟練運用菱形的性質(zhì)和等邊三角形的判定求出對角線長.5、D【解析】【分析】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,先證∠DHC=90o,再證四邊形ADEF是平行四邊形,最后利用勾股定理得出結(jié)果.【詳解】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,∵四邊形ABCD是平行四邊形,AB=3,∠ADC=60o,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60o,∵DH⊥BC,∴∠DHC=90o,∴∠ADC+∠CDH=90°,∴∠CDH=30°,在Rt△DCH中,CH=CD=,DH=,∴,∵四邊形BCEF是平行四邊形,∴AD=BC=EF,AD∥EF,∴四邊形ADEF是平行四邊形,∴AF∥DE,AF=DE=1,∵AF⊥BE,∴DE⊥BE,∴,∴,故選D.【點睛】本題考查了平行四邊形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是熟練運用這些性質(zhì)解決問題.二、填空題1、24【解析】【分析】根據(jù)題意作圖,得出四邊形為菱形,再根據(jù)菱形的性質(zhì)進行求解面積即可.【詳解】解:根據(jù)題意作圖如下:由題意得四邊形為菱形,,且平分,,,由勾股定理:,,,故答案為:24.【點睛】本題考查了菱形的判定及形,勾股定理,解題的關(guān)鍵是判斷四邊形是菱形.2、4.8【解析】【分析】由垂線段最短,可得AP⊥BC時,AP有最小值,由菱形的性質(zhì)和勾股定理可求BC的長,由菱形的面積公式可求解.【詳解】設(shè)AC與BD的交點為O,∵點P是BC邊上的一動點,∴AP⊥BC時,AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴,∵,∴,故答案為:4.8.【點睛】本題考查了菱形的性質(zhì),勾股定理,確定當(dāng)AP⊥BC時,AP有最小值是本題關(guān)鍵.3、【解析】【分析】由△ADM與△DCN全等,得出∠CDN=∠DAM,從而得到∠DPM=90°,由此∠APN=90°,再由直角三角形斜邊的中線的性質(zhì)求出PQ.【詳解】解:在正方形ABCD中,AD=CD,∠ADC=∠DCN=90°,在△ADM與△DCN中,∵AD=CD,DM=CN,∠ADC=∠DCN,∴△ADM≌△DCN(SAS),∴∠DAM=∠CDN,∴∠DMA=∠CND,在△DPM中,∠PDM+∠PMD=90°,∴∠DPM=90°,∵∠DPM=∠APN,∴△ANP為直角三角形,AN為直角三角形的斜邊,由直角三角形的性質(zhì)得PQ=AN,在△ANB中,AN==2,∴PQ=,故答案為:.【點睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形斜邊上的中線,勾股定理等知識,解題的關(guān)鍵是熟練掌握正方形的性質(zhì).4、2##【解析】【分析】根據(jù)折疊性質(zhì)和平行四邊形的性質(zhì)可以證明△ABG≌△EAD,可得AG=DE=2,然后利用勾股定理可得求出AF的長,進而可得GF的值.【詳解】解:如圖,GF⊥AB于點F,∵點E是CD邊上的中點,∴CE=DE=2,由折疊可知:∠BGE=∠C,BC=BG=3,CE=GE=2,在?ABCD中,BC=AD=3,BC∥AD,∴∠D+∠C=180°,BG=AD,∵∠BGE+∠AGB=180°,∴∠AGB=∠D,∵AB∥CD,∴∠BAG=∠AED,在△ABG和△EAD中,,∴△ABG≌△EAD(AAS),∴AG=DE=2,∴AB=AE=AG+GE=4,∵GF⊥AB于點F,∴∠AFG=∠BFG=90°,在Rt△AFG和△BFG中,根據(jù)勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=,∴GF2=AG2-AF2=4-=,∴GF=,故答案為2,.【點睛】本題考查了折疊的性質(zhì)、平行四邊形的性質(zhì)、勾股定理等知識,證明△ABG≌△EAD是解題的關(guān)鍵.5、(4044,0)【解析】【分析】由題意可知:正方形的邊長為2,分別求得,可發(fā)現(xiàn)點的位置是四個一循環(huán),每旋轉(zhuǎn)一次半徑增加2,找到規(guī)律,即求得點P2021在x軸正半軸,進而求得OP的長度,即可求得點的坐標(biāo).【詳解】由題意可知:正方形的邊長為2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,﹣12)…可發(fā)現(xiàn)點的位置是四個一循環(huán),每旋轉(zhuǎn)一次半徑增加2,2021÷4=505…1,故點P2021在x軸正半軸,OP的長度為2021×2+2=4044,即:P2021的坐標(biāo)是(4044,0),故答案為:(4044,0).【點睛】本題考查了平面直角坐標(biāo)系點的坐標(biāo)規(guī)律,正方形的性質(zhì),找到點的位置是四個一循環(huán),每旋轉(zhuǎn)一次半徑增加2的規(guī)律是解題的關(guān)鍵.三、解答題1、(1)證明過程見解析;(2)BG的長為4;(3)2或6﹣4或或6+4【分析】(1)連結(jié)BB1交CG于點M,交CD于點Q,證明四邊形ABCD是正方形,再根據(jù)對稱的性質(zhì)得到CE垂直平分BB1,得到△BCG≌△B1CG(SSS),即可得解;(2)設(shè)BG交AD于點N,得到△BCQ≌△CDE(ASA),得到CQ=DE=5,BQ=CE=5,再根據(jù)勾股定理得到BM,最后利用勾股定理計算即可;(3)根據(jù)點G的位置不同分4種情況進行討論計算即可;【詳解】(1)證明:如圖1,連結(jié)BB1交CG于點M,交CD于點Q,∵AD∥BC,AD=BC,∴四邊形ABCD是平行四邊形,∵BC=DC,∠BCD=90°,∴四邊形ABCD是正方形,∵點B1與點B關(guān)于CE對稱,∴CE垂直平分BB1,∴BC=B1C,BG=B1G,∵CG=CG,∴△BCG≌△B1CG(SSS),∴∠CBG=∠CB1G,∵DC=B1C,∴∠CDB1=∠CB1G,∴∠CBG=∠CDB1.(2)解:如圖1,設(shè)BG交AD于點N,∵BC=CD=AD=10,∴DE=AD=5,∵∠CDE=90°,∴CE=,∵∠BCQ=∠CDE=∠BMC=90°,∴∠CBQ=90°﹣∠BCM=∠DCE,∴△BCQ≌△CDE(ASA),∴CQ=DE=5,BQ=CE=5,∵CM⊥BQ,∴S△BCQ=BQ?CM=BC?CQ,∴,∴CM=2,∴BM=,∵∠ABC=∠BAN=90°,∴∠GDN+∠CDB1=90°,∠ABN+∠CBG=90°,∴∠GDN=∠ABN,∵∠GND=∠ANB,∴∠GDN+∠GND=∠ABN+∠ANB=90°,∴∠BGB1=90°,∴∠BGM=∠B1GM=∠BGB1=45°,∵∠BMG=90°,∴∠BMG=∠BGM=45°,∴GM=BM=4,∴BG=,∴BG的長為4.(3)解:如圖1,由(2)得CM=2,GM=4,∴CG=2+4=6,如圖2,CH=CG=6,則∠CHG=∠CGH=45°,∴∠GCH=90°,∴GH=,∴BH=GH﹣BG=6﹣4=2;如圖3,HG=CG=6,且點H與點B在直線FB1的同側(cè),∴BH=HG﹣BG=6﹣4;如圖4,CH=GH,則∠HCG=∠HGC=45°,∴∠CHG=90°,∴CH2+GH2=CG2,∴2GH2=(6)2,∴GH=3,∴BH=BG﹣GH=4﹣3=;如圖5,HG=CG=6,且點H與點B在直線FB1的異側(cè),∴BH=HG+BG=6+4,綜上所述,BH的長為2或6﹣4或或6+4,故答案為:2或6﹣4或或6+4.【點睛】本題主要考查了全等三角形的綜合,勾股定理,垂直平分線的判定與性質(zhì),正方形的性質(zhì),準(zhǔn)確分析計算是解題的關(guān)鍵.2、(1)四邊形CODP是菱形,理由見解析;(2)四邊形CODP是矩形,理由見解析;(3)四邊形CODP是正方形,理由見解析【分析】(1)先證明四邊形CODP是平行四邊形,再由矩形的性質(zhì)可得OD=OC,即可證明平行四邊形OCDP是菱形;(2)先證明四邊形CODP是平行四邊形,再由菱形的性質(zhì)可得∠DOC=90°,即可證明平行四邊形OCDP是矩形;(3)先證明四邊形CODP是平行四邊形,再由正方形的性質(zhì)可得BD⊥AC,DO=OC,即可證明平行四邊形OCDP是正方形;【詳解】解:(1)四邊形CODP是菱形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是矩形,∴OD=OC,∴平行四邊形OCDP是菱形;(2)四邊形CODP是矩形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是菱形,∴BD⊥AC,∴∠DOC=90°,∴平行四邊形OCDP是矩形;(3)四邊形CODP是正方形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是正方形,∴BD⊥AC,DO=OC,∴∠DOC=90°,平行四邊形CODP是菱形,∴菱形OCDP是正方形.【點睛】本題主要考查了矩形的性質(zhì)與判定,菱形的性質(zhì)與判定,正方形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握特殊平行四邊形的性質(zhì)與判定條件.3、(1)證明見解析;(2)證明見解析;【分析】(1)根據(jù)平行四邊形的性質(zhì)得到,AB=CD,然后根據(jù)CE=DC,得到AB=EC,,利用“一組對邊平行且相等的四邊形是平行四邊形”判斷即可;(2)由(1)得的結(jié)論得四邊形ABEC是平行四邊形,再通過角的關(guān)系得出FA=FE=FB=FC,AE=BC,可得結(jié)論.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴,AB=CD,∵CE=DC,∴AB=EC,,∴四邊形ABEC是平行四邊形;(2)∵由(1)知,四邊形ABEC是平行四邊形,∴FA=FE,F(xiàn)B=FC.∵四邊形ABCD是平行四邊形,∴∠ABC=∠D.又∵∠AFC=2∠ADC,∴∠AFC=2∠ABC.∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四邊形ABEC是矩形.【點睛】本題考查的是平行四邊形的判定與性質(zhì)及矩形的判定,關(guān)鍵是先由平行四邊形的性質(zhì)證三角形全等,然后推出平行四邊形,再通過角的關(guān)系證矩形.4、(1)BP=CE,CE⊥BC;(2)仍然成立,見解析;(3)31【分析】(1)連接AC,根據(jù)菱形的性質(zhì)和等邊三角形的性質(zhì)證明△BAP≌△CAE即可證得結(jié)論;(2)(1)中的結(jié)論成立,用(1)中的方法證明△BAP≌△CAE即可;(3)分兩種情形:當(dāng)點P在BD的延長線上時或點P在線段DB的延長線上時,連接AC交BD于點O,由∠BCE=90°,根據(jù)勾股定理求出CE的長即得到BP的長,再求AO、PO、PD的長及等邊三角形APE的邊長可得結(jié)論.【詳解】解:(1)如圖1,連接AC,延長CE交AD于點H,∵四邊形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等邊三角形,∴AB=AC,∠BAC=60°;∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC,∴△BAP≌△CAE(SAS),∴BP=CE;∵四邊形ABCD是菱形,∴∠ABP=∠ABC=30°,∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案為:BP=CE,CE⊥BC;(2)(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立,理由如下:如圖2中,連接AC,設(shè)CE與AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等邊三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE(SAS),∴BP=CE,∠A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/Z 137.1-2025健康信息學(xué)3D人體位置系統(tǒng)表示的分類結(jié)構(gòu)第1部分:骨骼
- 2026年南陽科技職業(yè)學(xué)院單招職業(yè)傾向性考試題庫帶答案詳解
- 2026年寧德師范學(xué)院單招職業(yè)傾向性測試題庫及參考答案詳解1套
- 2026年九江職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性考試題庫帶答案詳解
- 2026年遵義職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性測試題庫參考答案詳解
- 2026年榆林職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性考試題庫參考答案詳解
- 2026年浙江越秀外國語學(xué)院單招職業(yè)適應(yīng)性考試題庫及參考答案詳解
- 2026年石家莊醫(yī)學(xué)高等??茖W(xué)校單招職業(yè)適應(yīng)性測試題庫及完整答案詳解1套
- 2026年揚州市職業(yè)大學(xué)單招職業(yè)適應(yīng)性測試題庫及答案詳解一套
- 2026年安康職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性考試題庫參考答案詳解
- 2025年刑法學(xué)考試試題及答案
- 廣東省汕頭市金平區(qū)2024-2025學(xué)年七年級上學(xué)期期末地理試題
- 2025年二手車交易市場發(fā)展可行性研究報告及總結(jié)分析
- 北京市交通運輸綜合執(zhí)法總隊軌道交通運營安全專職督查員招聘10人考試參考題庫附答案解析
- 湘教版八年級地理上冊 第三章《中國的自然資源》單元測試卷及答案
- 2025湘教版八年級地理上冊期末復(fù)習(xí)全冊知識點提綱
- DB63∕T 1917-2021 森林防火隔離帶建設(shè)技術(shù)規(guī)程
- 浙江省強基聯(lián)盟2025-2026學(xué)年高三上學(xué)期12月考試物理試卷
- 2025年中國白酒行業(yè)發(fā)展研究報告
- 2025年秋冀教版(新教材)小學(xué)信息科技三年級上冊期末綜合測試卷及答案
- 2025年度選人用人工作專題報告
評論
0/150
提交評論