版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《全等三角形》章節(jié)練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、圖,,,則的對應(yīng)邊是(
)A. B. C. D.2、如圖是作的作圖痕跡,則此作圖的已知條件是(
)A.已知兩邊及夾角 B.已知三邊 C.已知兩角及夾邊 D.已知兩邊及一邊對角3、如圖,在梯形中,,,,那么下列結(jié)論不正確的是()A. B.C. D.4、下列關(guān)于全等三角形的說法不正確的是A.全等三角形的大小相等 B.兩個等邊三角形一定是全等三角形C.全等三角形的形狀相同 D.全等三角形的對應(yīng)邊相等5、如圖,AB=AD,∠BAO=∠DAO,由此可以得出的全等三角形是()A.≌ B.≌C.≌ D.≌第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在和中,,,,,以點(diǎn)為頂點(diǎn)作,兩邊分別交,于點(diǎn),,連接,則的周長為______.2、如圖,在和中,點(diǎn)B、E、C、F在同一條直線上,且,,請你再添加一個適當(dāng)?shù)臈l件:________________,使.3、如圖,ADBC,,,連接AC,過點(diǎn)D作于E,過點(diǎn)B作于F.(1)若,則∠ADE為___°(2)寫出線段BF、EF、DE三者間的數(shù)量關(guān)系___.4、如圖,AB⊥BC于B,DC⊥BC于C,AB=6,BC=8,CD=2,點(diǎn)P為BC邊上一動點(diǎn),當(dāng)BP=________時(shí),形成的Rt△ABP與Rt△PCD全等.5、如圖,在Rt△ABC中,∠B=90°,以頂點(diǎn)C為圓心、適當(dāng)長為半徑畫弧,分別交AC、BC于點(diǎn)E、F,再分別以點(diǎn)E、F為圓心,以大于EF的長為半徑畫弧,兩弧交于點(diǎn)P,作射線CP交AB于點(diǎn)D.若BD=4,AC=16,則△ACD的面積是______.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,在四邊形ABCD中,已知BD平分∠ABC,∠BAD+∠C=180°,求證:AD=CD.2、如圖,,,垂足分別為與相交于點(diǎn),.(1)求證:;(2)在不添加任何輔助線的情況下,請直接寫出圖中四對全等的三角形..3、已知:如圖,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求證:AC=BD;(2)求∠APB的度數(shù).4、如圖,若△OAD≌△OBC,且∠O=65°,∠BEA=135°,求∠C的度數(shù).5、已知△ABC與ΔADE均為等腰直角三角形,且∠BAC=∠DAE=90°,點(diǎn)D在直線BC上.(1)如圖1,當(dāng)點(diǎn)D在CB延長線上時(shí),求證:BE⊥CD;(2)如圖2,當(dāng)D點(diǎn)不在直線BC上時(shí),BE、CD相交于M,①直接寫出∠CME的度數(shù);②求證:MA平分∠CME-參考答案-一、單選題1、C【解析】【分析】根據(jù)全等三角形中對應(yīng)角所對的邊是對應(yīng)邊,可知BC=DA.【詳解】解:∵ABC≌△CDA,∠BAC=∠DCA,∴∠BAC與∠DCA是對應(yīng)角,∴BC與DA是對應(yīng)邊(對應(yīng)角對的邊是對應(yīng)邊).故選C.【考點(diǎn)】本題考查了全等三角形中對應(yīng)邊的找法,解題的關(guān)鍵是掌握書寫的特點(diǎn).2、C【解析】【分析】觀察的作圖痕跡,可得此作圖的條件.【詳解】解:觀察的作圖痕跡,可得此作圖的已知條件為:∠α,∠β,及線段AB,故已知條件為:兩角及夾邊,故選C.【考點(diǎn)】本題主要考查三角形作圖及三角形全等的相關(guān)知識.3、A【解析】【分析】A、根據(jù)三角形的三邊關(guān)系即可得出A不正確;B、通過等腰梯形的性質(zhì)結(jié)合全等三角形的判定與性質(zhì)即可得出∠ADB=90°,從而得出B正確;C、由梯形的性質(zhì)得出AB∥CD,結(jié)合角的計(jì)算即可得出∠ABC=60°,即C正確;D、由平行線的性質(zhì)結(jié)合等腰三角形的性質(zhì)即可得出∠DAC=∠CAB,即D正確.綜上即可得出結(jié)論.【詳解】A、∵AD=DC,∴AC<AD+DC=2CD,故A不正確;B、∵四邊形ABCD是等腰梯形,∴∠ABC=∠BAD,在△ABC和△BAD中,,∴△ABC≌△BAD(SAS),∴∠BAC=∠ABD,∵AB∥CD,∴∠CDB=∠ABD,∠ABC+∠DCB=180°,∵DC=CB,∴∠CDB=∠CBD=∠ABD=∠BAC,∵∠ACB=90°,∴∠CDB=∠CBD=∠ABD=30°,∴∠ABC=∠ABD+∠CBD=60°,B正確,C、∵AB∥CD,∴∠DCA=∠CAB,∵AD=DC,∴∠DAC=∠DCA=∠CAB,C正確.D、∵△DAB≌△CBA,∴∠ADB=∠BCA.∵AC⊥BC,∴∠ADB=∠BCA=90°,∴DB⊥AD,D正確;故選:A.【考點(diǎn)】本題考查了梯形的性質(zhì)、平行線的性質(zhì)、等腰三角形的性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是逐項(xiàng)分析四個選項(xiàng)的正誤.本題屬于中檔題,稍顯繁瑣,但好在該題為選擇題,只需由三角形的三邊關(guān)系得出A不正確即可.4、B【解析】【分析】根據(jù)全等三角形的定義與性質(zhì)即可求解.【詳解】A、全等三角形的大小相等,說法正確,故A選項(xiàng)錯誤;B、兩個等邊三角形,三個角對應(yīng)相等,但邊長不一定相等,所以不一定是全等三角形,故B選項(xiàng)正確;C、全等三角形的形狀相同,說法正確,故C選項(xiàng)錯誤;D、全等三角形的對應(yīng)邊相等,說法正確,故D選項(xiàng)錯誤.故選B.【考點(diǎn)】本題考查了全等三角形的定義與性質(zhì),能夠完全重合的兩個三角形叫做全等三角形,即形狀相同、大小相等兩個三角形叫做全等三角形;全等三角形的對應(yīng)邊相等,對應(yīng)角相等.5、B【解析】【分析】觀察圖形,運(yùn)用SAS可判定△ABO與△ADO全等.【詳解】解:∵AB=AD,∠BAO=∠DAO,AO是公共邊,
∴△ABO≌△ADO(SAS).故選B.【考點(diǎn)】本題考查全等三角形的判定,屬基礎(chǔ)題,比較簡單.二、填空題1、4【解析】【分析】延長AC至E,使CE=BM,連接DE.證明△BDM≌△CDE(SAS),得出MD=ED,∠MDB=∠EDC,證明△MDN≌△EDN(SAS),得出MN=EN=CN+CE,進(jìn)而得出答案.【詳解】延長AC至E,使CE=BM,連接DE.∵BD=CD,且∠BDC=140°,∴∠DBC=∠DCB=20°,∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠ECD=∠NCD=∠MBD=90°,在△BDM和△CDE中,,∴△BDM≌△CDE(SAS),∴MD=ED,∠MDB=∠EDC,∴∠MDE=∠BDC=140°,∵∠MDN=70°,∴∠EDN=70°=∠MDN,在△MDN和△EDN中,,∴△MDN≌△EDN(SAS),∴MN=EN=CN+CE,∴△AMN的周長=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案為:4.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)等知識;構(gòu)造輔助線證明三角形全等是解題的關(guān)鍵.2、或或【解析】【分析】根據(jù)全等三角形的判定即可求解.【詳解】解:①根據(jù)定理,即,可得;②根據(jù)定理,即,可得;③若,則,則根據(jù)定理,即可得;綜上所述,添加一個適當(dāng)?shù)臈l件:或或,故答案為:或或.(答案不唯一)【考點(diǎn)】本題考查了全等三角形的判定,熟練掌握全等三角形的判定定理是解題的關(guān)鍵.3、
30
【解析】【分析】(1)根據(jù)直角三角形兩銳角互余進(jìn)行倒角即可求解;(2)根據(jù)ASA證明≌,即可求解.【詳解】解:(1)∵,且ADBC,,∴,∴,∴,∴;故答案為:30;(2)在和中,,∴≌,∴,,∵,∴.故答案為:【考點(diǎn)】本題考查直角三角形兩銳角互余、全等三角形的判定與性質(zhì)等內(nèi)容,根據(jù)已知條件進(jìn)行倒角是解題的關(guān)鍵.4、2【解析】【分析】當(dāng)BP=2時(shí),Rt△ABP≌Rt△PCD,由BC=8可得CP=6,進(jìn)而可得AB=CP,BP=CD,再結(jié)合AB⊥BC、DC⊥BC可得∠B=∠C=90°,可利用SAS判定△ABP≌△PCD.【詳解】當(dāng)BP=2時(shí),Rt△ABP≌Rt△PCD.理由如下:∵BC=8,BP=2,∴PC=6,∴AB=PC.∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°.在△ABP和△PCD中,∵,∴△ABP≌△PCD(SAS).故答案為:2.【考點(diǎn)】本題考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解題的關(guān)鍵.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時(shí),必須有邊的參與,若有兩邊一角相等時(shí),角必須是兩邊的夾角.5、32【解析】【分析】過點(diǎn)D作DQ⊥AC,由作法可知CP是角平分線,根據(jù)角平分線的性質(zhì)知DB=DQ=3,再由三角形的面積公式計(jì)算即可.【詳解】解:如圖,過點(diǎn)D作DQ⊥AC于點(diǎn)Q,由作圖知CP是∠ACB的平分線,∵∠B=90°,BD=4,∴DB=DQ=4,∵AC=16,∴S△ACD=?AC?DQ=,故答案為32.【考點(diǎn)】本題主要考查作圖-基本作圖,三角形面積,解題的關(guān)鍵是掌握角平分線的尺規(guī)作圖及角平分線的性質(zhì).三、解答題1、見解析【解析】【詳解】試題分析:在邊BC上截取BE=BA,連接DE,根據(jù)SAS證△ABD≌△EBD,推出AD=ED,∠A=∠BED,求出∠DEC=∠C即可.試題解析:證明:在邊BC上截取BE=BA,連接DE.∵BD平分∠ABC,∴∠ABD=∠CBD.在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵∠A+∠C=180°,∠BED+∠CED=180°,∴∠C=∠CED,∴CD=ED,∴AD=CD.點(diǎn)睛:本題考查了等腰三角形的判定,全等三角形的性質(zhì)和判定等知識點(diǎn)的應(yīng)用,解答此題的關(guān)鍵是正確作輔助線,又是難點(diǎn),解題的思路是把AD和CD放到一個三角形中,根據(jù)等腰三角形的判定進(jìn)行證明,題型較好,有一定的難度.2、(1)見解析;(2),,,【解析】【分析】(1)根據(jù)垂直的定義得出∠BDF=∠CEF=90°,根據(jù)AAS可以推出△BDF≌△CEF,根據(jù)全等三角形的性質(zhì)得出即可;(2)根據(jù)全等三角形的性質(zhì)得出∠B=∠C,BD=CE,DF=EF,求出AB=AC,再根據(jù)全等三角形的判定定理推出△ADF≌△AEF,△ABF≌△ACF,△ACD≌△ABE.【詳解】證明:,在和中(AAS)
⑵,,,理由是:由(1)知:△BFD≌△CFE,所以DF=EF,∠B=∠C,BD=CE,根據(jù)HL可以推出△ADF≌△AEF,所以AD=AE,∵BD=CE,∴AB=AC,根據(jù)SAS可以推出△ABF≌△ACF,根據(jù)HL可以推出△ACD≌△ABE.【考點(diǎn)】本題考查了全等三角形的性質(zhì)和判定,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL.3、(1)見解析;(2)【解析】【分析】(1)通過證明,即可求證;(2)利用三角形外角的性質(zhì)可得,由(1)可得,從而得到,利用三角形內(nèi)角和的性質(zhì)即可求解.(1)證明:∵,∴,又∵OA=OB,OC=OD,∴,∴;(2)解:由(1)可得,由三角形外角的性質(zhì)可得∴,∴,【考點(diǎn)】此題考查了全等三角形的判定與性質(zhì),三角形內(nèi)角的性質(zhì)以及三角形外角的性質(zhì),解題的關(guān)鍵是熟練掌握相關(guān)基本性質(zhì).4、35o【解析】【分析】根據(jù)全等三角形對應(yīng)角相等可得∠C=∠D,∠OBC=∠OAD,再根據(jù)三角形的內(nèi)角和等于180°表示出∠OBC,然后利用四邊形的內(nèi)角和等于360°列方程求解即可.【詳解】∴∠C=∠D,∠OBC=∠OAD,∵∠O=65o,∴∠OBC=180o?65o?∠C=115o?∠C,在四邊形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360o,∴65o+115o?∠C+135o+115o?∠C=360o,解得∠C=35o.【考點(diǎn)】此題考查了全等三角形的性質(zhì)和四邊形的內(nèi)角和等于360°,熟練掌握這兩個性質(zhì)是解題的關(guān)鍵.5、(1)見解析(2)①90°;②見解析【解析】【分析】(1)先推出∠CAD=∠BAE,∠C=∠ABC=45°,然后證明△CAD≌△BAE得到∠ABE=∠C=45°,則∠EBC=∠ABE+∠ABC=90°,即EB⊥CD;(2)①同理可證△BAE≌△CAD,得到∠ABE=∠ACD,再由∠EMC=∠EBC+∠BCD,得到∠EMC=∠ABE+∠ABC+∠ACD+∠BCD=90°;②如圖,過點(diǎn)A作AG⊥BE于G,AF⊥CD于F,由△BAE≌△CAD,得到AG=AF,證明Rt△AGM≌Rt△AFM得到∠AMG=∠AMF,即AM平分∠EMC.(1)解:∵△ABC與ΔADE均為等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AE=AD,∠DAE+∠DAB=∠CAB+∠DAB,∴∠CAD=∠BAE,∠C=∠ABC=45°,∴△CAD≌△BAE(SAS)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 返家鄉(xiāng)培訓(xùn)課件
- 2026年智能紗簾項(xiàng)目可行性研究報(bào)告
- 2026年新能源電力交易服務(wù)項(xiàng)目評估報(bào)告
- 2026年智能低溫冷萃果酒項(xiàng)目營銷方案
- 地基與基礎(chǔ)檢測方案
- 鋼結(jié)構(gòu)防雷設(shè)計(jì)方案
- 小學(xué)家校溝通智能平臺
- 防火巡護(hù)道生態(tài)安全評估技術(shù)
- 家校社協(xié)同下小學(xué)綜合實(shí)踐活動實(shí)施策略
- 2026屆寧夏青吳忠市銅峽高級中學(xué)高三上數(shù)學(xué)期末教學(xué)質(zhì)量檢測試題含解析
- 2025年武漢大學(xué)專職管理人員和學(xué)生輔導(dǎo)員招聘真題
- 社會實(shí)踐-形考任務(wù)三-國開(CQ)-參考資料
- 盧氏縣橫澗壯溝鐵礦礦山地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
- 醫(yī)護(hù)人員形象禮儀培訓(xùn)
- 中國的“愛經(jīng)”(一)-《天地陰陽交⊥歡大樂賦》
- 心房鈉尿肽基因敲除小鼠的繁殖和鑒定
- 母嬰護(hù)理職業(yè)道德課件
- 口腔頜面外科學(xué)(全)
- 安徽金軒科技有限公司 年產(chǎn)60萬噸硫磺制酸項(xiàng)目環(huán)境影響報(bào)告書
- 魔鬼理論之k線秘笈圖解課件
- GB/T 9163-2001關(guān)節(jié)軸承向心關(guān)節(jié)軸承
評論
0/150
提交評論