吉林省雙遼市中考數(shù)學(xué)考前沖刺練習(xí)題含答案詳解【輕巧奪冠】_第1頁
吉林省雙遼市中考數(shù)學(xué)考前沖刺練習(xí)題含答案詳解【輕巧奪冠】_第2頁
吉林省雙遼市中考數(shù)學(xué)考前沖刺練習(xí)題含答案詳解【輕巧奪冠】_第3頁
吉林省雙遼市中考數(shù)學(xué)考前沖刺練習(xí)題含答案詳解【輕巧奪冠】_第4頁
吉林省雙遼市中考數(shù)學(xué)考前沖刺練習(xí)題含答案詳解【輕巧奪冠】_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

吉林省雙遼市中考數(shù)學(xué)考前沖刺練習(xí)題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、函數(shù)y=ax與y=ax2+a(a≠0)在同一直角坐標(biāo)系中的大致圖象可能是()A. B.C. D.2、一元二次方程,用配方法解該方程,配方后的方程為()A. B.C. D.3、若關(guān)于x的二次函數(shù)y=ax2+bx的圖象經(jīng)過定點(1,1),且當(dāng)x<﹣1時y隨x的增大而減小,則a的取值范圍是()A. B. C. D.4、如圖,正五邊形內(nèi)接于⊙,為上的一點(點不與點重合),則的度數(shù)為(

)A. B. C. D.5、對于函數(shù)的圖象,下列說法不正確的是(

)A.開口向下 B.對稱軸是直線C.最大值為 D.與軸不相交二、多選題(5小題,每小題3分,共計15分)1、下列四個說法中,不正確的是(

)A.一元二次方程有實數(shù)根B.一元二次方程有實數(shù)根C.一元二次方程有實數(shù)根D.一元二次方程x2+4x+5=a(a≥1)有實數(shù)根2、拋物線y=ax2+bx+c(a≠0)的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論中正確的是()A.b2﹣4ac<0B.當(dāng)x>﹣1時,y隨x增大而減小C.a(chǎn)+b+c<0D.若方程ax2+bx+c-m=0沒有實數(shù)根,則m>2E.3a+c<03、下列說法不正確的是(

)A.經(jīng)過三個點有且只有一個圓B.經(jīng)過兩點的圓的圓心是這兩點連線的中點C.鈍角三角形的外心在三角形外部D.等腰三角形的外心即為其中心4、對于實數(shù)a,b,定義運算“※”:,例如:4※2,因為,所以,若函數(shù),則下列結(jié)論正確的是(

)A.方程的解為,;B.當(dāng)時,y隨x的增大而增大;C.若關(guān)于x的方程有三個解,則;D.當(dāng)時,函數(shù)的最大值為1.5、已知二次函數(shù)y=x2-4x+a,下列說法正確的是()A.當(dāng)x<1時,y隨x的增大而減小B.若圖象與x軸有交點,則a≥-4C.當(dāng)a=3時,不等式x2-4x+a<0的解集是1<x<3D.若將圖象向上平移1個單位,再向左平移3個單位后過點(1,-2),則a=-3第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、某批青稞種子在相同條件下發(fā)芽試驗結(jié)果如下表:每次試驗粒數(shù)501003004006001000發(fā)芽頻數(shù)4796284380571948估計這批青稞發(fā)芽的概率是___________.(結(jié)果保留到0.01)2、對任意實數(shù)a,b,定義一種運算:,若,則x的值為_________.3、如圖,在平面直角坐標(biāo)系中,點A在拋物線y=x2﹣2x+2上運動.過點A作AC⊥x軸于點C,以AC為對角線作矩形ABCD,連接BD,則對角線BD的最小值為_____.4、如圖有一拋物線形的拱橋,拱高10米,跨度為40米,則該拋物線的表達(dá)式為______________.5、若某二次函數(shù)圖象的形狀與拋物線y=3x2相同,且頂點坐標(biāo)為(0,-2),則它的表達(dá)式為________.四、解答題(6小題,每小題10分,共計60分)1、如圖,矩形ABCD中,AB=2cm,BC=3cm,點E從點B沿BC以2cm/s的速度向點C移動,同時點F從點C沿CD以1cm/s的速度向點D移動,當(dāng)E,F(xiàn)兩點中有一點到達(dá)終點時,另一點也停止運動.當(dāng)△AEF是以AF為底邊的等腰三角形時,求點E運動的時間.2、如圖1,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0).(1)求該拋物線所對應(yīng)的函數(shù)解析式;(2)如圖2,該拋物線與y軸交于點C,頂點為F,點D(2,3)在該拋物線上.①求四邊形ACFD的面積;②點P是線段AB上的動點(點P不與點A、B重合),過點P作PQ⊥x軸交該拋物線于點Q,連接AQ、DQ,當(dāng)△AQD是直角三角形時,求出所有滿足條件的點Q的坐標(biāo).3、如圖,已知點在上,點在外,求作一個圓,使它經(jīng)過點,并且與相切于點.(要求寫出作法,不要求證明)4、如圖1,在等腰直角三角形中,.點,分別為,的中點,為線段上一動點(不與點,重合),將線段繞點逆時針方向旋轉(zhuǎn)得到,連接,.(1)證明:;(2)如圖2,連接,,交于點.①證明:在點的運動過程中,總有;②若,當(dāng)?shù)拈L度為多少時,為等腰三角形?5、在數(shù)學(xué)活動課上,王老師要求學(xué)生將圖1所示的3×3正方形方格紙,剪掉其中兩個方格,使之成為軸對稱圖形.規(guī)定:凡通過旋轉(zhuǎn)能重合的圖形視為同一種圖形,如圖2的四幅圖就視為同一種設(shè)計方案(陰影部分為要剪掉部分)請在圖中畫出4種不同的設(shè)計方案,將每種方案中要剪掉的兩個方格涂黑(每個3×3的正方形方格畫一種,例圖除外)6、用配方法解方程:.-參考答案-一、單選題1、D【解析】【分析】先根據(jù)一次函數(shù)的性質(zhì)確定a>0與a<0兩種情況分類討論拋物線的頂點位置即可得出結(jié)論.【詳解】解:函數(shù)y=ax與y=ax2+a(a≠0)A.函數(shù)y=ax圖形可得a<0,則y=ax2+a(a≠0)開口方向向下正確,當(dāng)頂點坐標(biāo)為(0,a),應(yīng)交于y軸負(fù)半軸,而不是交y軸正半軸,故選項A不正確;

B.函數(shù)y=ax圖形可得a<0,則y=ax2+a(a≠0)開口方向向下正確,當(dāng)頂點坐標(biāo)為(0,a),應(yīng)交于y軸負(fù)半軸,而不是在坐標(biāo)原點上,故選項B不正確;

C.函數(shù)y=ax圖形可得a>0,則y=ax2+a(a≠0)開口方向向上正確,當(dāng)頂點坐標(biāo)為(0,a),應(yīng)交于y軸正半軸,故選項C不正確;

D.函數(shù)y=ax圖形可得a<0,則y=ax2+a(a≠0)開口方向向上正確,當(dāng)頂點坐標(biāo)為(0,a),應(yīng)交于y軸正半軸正確,故選項D正確;

故選D.【考點】本題考查的知識點是一次函數(shù)的圖象與二次函數(shù)的圖象,理解掌握函數(shù)圖象的性質(zhì)是解此題的關(guān)鍵.2、D【解析】【分析】按照配方法的步驟,移項,配方,配一次項系數(shù)一半的平方.【詳解】∵x2?2x?m=0,∴x2?2x=m,∴x2?2x+1=m+1,∴(x?1)2=m+1.故選D.【考點】此題考查了配方法解一元二次方程,解題時要注意解題步驟的準(zhǔn)確使用.3、D【解析】【分析】根據(jù)題意開口向上,且對稱軸?≥?1,a+b=1,即可得到?≥?1,從而求解.【詳解】由二次函數(shù)y=ax2+bx可知拋物線過原點,∵拋物線定點(1,1),且當(dāng)x<-1時,y隨x的增大而減小,∴拋物線開口向上,且對稱軸?≥?1,a+b=1,∴a>0,b=1﹣a,∴﹣≥﹣1,∴,故選:D.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點的坐標(biāo)特征,根據(jù)題意得關(guān)于a的不等式組是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)圓周角的性質(zhì)即可求解.【詳解】連接CO、DO,正五邊形內(nèi)心與相鄰兩點的夾角為72°,即∠COD=72°,同一圓中,同弧或同弦所對應(yīng)的圓周角為圓心角的一半,故∠CPD=,故選B.【考點】此題主要考查圓內(nèi)接多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理的應(yīng)用.5、D【解析】【分析】根據(jù)二次函數(shù)的性質(zhì),進(jìn)行判斷,即可得到答案.【詳解】解:∵,則開口向下,故A正確;對稱軸是直線,故B正確;當(dāng),y有最大值k,故C正確;當(dāng),,與y軸肯定有交點,故D錯誤;故選擇:D.【考點】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟記二次函數(shù)的性質(zhì).二、多選題1、ABC【解析】【分析】判斷上述方程的根的情況,只要看根的判別式△的值的符號就可以了.【詳解】解:、△,方程無實數(shù)根,錯誤,符合題意;、△,方程無實數(shù)根,錯誤,符合題意;、△,方程無實數(shù)根,錯誤,符合題意;、△,方程有實數(shù)根,正確,不符合題意;故選:ABC.【考點】本題考查了一元二次方程根的情況與判別式△的關(guān)系:解題的關(guān)鍵是掌握(1)△方程有兩個不相等的實數(shù)根;(2)△方程有兩個相等的實數(shù)根;(3)△方程沒有實數(shù)根.2、BCDE【解析】【分析】利用圖象信息,以及二次函數(shù)的性質(zhì)即可一一判斷.【詳解】∵二次函數(shù)與x軸有兩個交點,∴b2-4ac>0,故A錯誤,觀察圖象可知:當(dāng)x>-1時,y隨x增大而減小,故B正確,∵拋物線與x軸的另一個交點為在(0,0)和(1,0)之間,∴x=1時,y=a+b+c<0,故C正確,∵當(dāng)m>2時,拋物線與直線y=m沒有交點,∴方程ax2+bx+c-m=0沒有實數(shù)根,故D正確,∵對稱軸x=-1=,∴b=2a,∵a+b+c<0,∴3a+c<0,故E正確,故答案為BCDE.【考點】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,根的判別式、拋物線與x軸的交點等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.3、ABD【解析】【分析】A.根據(jù)確定圓的條件求解即可;B.根據(jù)確定圓心的方法求解即可;C.根據(jù)三角形外心的性質(zhì)求解即可;D.根據(jù)三角形外心的性質(zhì)求解即可;【詳解】解:A、如果三個點在一條直線上,不存在經(jīng)過這三個點的圓,故選項錯誤,符合題意;B、經(jīng)過兩點的圓的所有圓心在兩點連線的垂直平分線上,不僅僅是這兩點連線的中點,故選項錯誤,符合題意;C、鈍角三角形的外心是三邊垂直平分線的交點,在三角形外部,選項正確,不符合題意;D、等腰三角形的外心是三邊垂直平分線的交點,不是其中心,故選項錯誤,符合題意;故選:ABD.【考點】此題考查了確定圓的條件,確定圓心的方法,三角形的外心等知識,解題的關(guān)鍵是熟練掌握確定圓的條件,確定圓心的方法,三角形的外心.4、ABD【解析】【分析】根據(jù)題干定義求出y=(2x)※(x+1)的解析式,根據(jù)2x≥x+1及2x<x+1可得x≥1時y=2x2﹣2x,x<1時,y=﹣x2+1,進(jìn)而求解.【詳解】解:根據(jù)題意得:當(dāng)2x≥x+1,即x≥1時,y=(2x)2﹣2x(x+1)=2x2﹣2x,當(dāng)2x<x+1,即x<1時,y=(x+1)2﹣2x(x+1)=﹣x2+1,∴當(dāng)x≥1時,2x2﹣2x=0,解得x=0(舍去)或x=1,當(dāng)x<1時,﹣x2+1=0,解得x=1(舍去)或x=﹣1,∴(2x)※(x+1)=0的解是x1=﹣1,x2=1;故A正確,B、當(dāng)x>1時,y=2x2﹣2x,拋物線開口向上,對稱軸是直線x=,∴x>1時,y隨x的增大而增大,∴B選項正確.當(dāng)x≥1時,y=2x2﹣2x=2(x﹣)2﹣,∴x=1時,y取最小值為y=0,當(dāng)x<1時,y=﹣x2+1=0,當(dāng)x=0時,y取最大值為y=1,如圖,當(dāng)0<m<1時,方程(2x)※(x+1)=m有三個解,∴選項C錯誤,選項D正確.故答案為:ABD.【考點】本題考查二次函數(shù)的新定義問題,解題關(guān)鍵是掌握二次函數(shù)的性質(zhì),掌握二次函數(shù)與方程的關(guān)系.5、ACD【解析】【分析】A、此函數(shù)在對稱軸的左邊是隨著x的增大而減小,在右邊是隨x增大而增大,據(jù)此作答;B、和x軸有交點,就說明△≥0,易求a的取值;C、解一元二次不等式即可;D、根據(jù)左加右減,上加下減作答即可.【詳解】解:∵y=x2?4x+a,∴對稱軸:直線x=2,A、當(dāng)x<1時,y隨x的增大而減小,故該選項正確;B、當(dāng)Δ=b2?4ac=16?4a≥0,即a≤4時,二次函數(shù)和x軸有交點,該選項錯誤;C、當(dāng)a=3時,則不等式x2?4x+3<0,即(x-3)(x-1)<0,∴不等式的解集是1<x<3,故該選項正確;D、y=x2?4x+a配方后是y=(x?2)2+a?4,向上平移1個單位,再向左平移3個單位后,函數(shù)解析式是y=(x-1)2+a?3,把(1,?2)代入函數(shù)解析式,易求a=?3,故該選項正確.故選:ACD.【考點】本題考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是掌握有關(guān)二次函數(shù)的增減性、與x軸交點的條件、與一元二次不等式的關(guān)系、上下左右平移的規(guī)律.三、填空題1、0.95【解析】【分析】利用大量重復(fù)試驗下事件發(fā)生的頻率可以估計該事件發(fā)生的概率直接回答即可.【詳解】觀察表格得到這批青稞發(fā)芽的頻率穩(wěn)定在0.95附近,則這批青稞發(fā)芽的概率的估計值是0.95,故答案為:0.95.【考點】此題考查了利用頻率估計概率,從表格中的數(shù)據(jù)確定出這種油菜籽發(fā)芽的頻率是解本題的關(guān)鍵.2、2或-3##-3或2【解析】【分析】根據(jù)題意得到關(guān)于x的一元二次方程,解方程即可.【詳解】解:∵,∴,∴,解得或,故答案為:2或-3.【考點】本題主要考查了新定義下的實數(shù)運算,解一元二次方程,正確理解題意是解題的關(guān)鍵.3、1【解析】【分析】由矩形的性質(zhì)可知BD=AC,再結(jié)合頂點到x軸的距離最近可知當(dāng)點A在頂點處時滿足條件,求得拋物線的頂點坐標(biāo)即可求得答案.【詳解】解:∵AC⊥x軸,∴當(dāng)點A為拋物線頂點時,AC有最小值,∵拋物線y=x2﹣2x+2=(x?1)2+1,∴頂點坐標(biāo)為(1,1),∴AC的最小值為1,∵四邊形ABCD為矩形,∴BD=AC,∴BD的最小值為1,故答案為:1.【考點】本題主要考查了二次函數(shù)的性質(zhì)及矩形的性質(zhì),確定出AC最小時的位置是解題的關(guān)鍵.4、【解析】【分析】由題意拋物線過點(40,0),頂點坐標(biāo)為(20,10),設(shè)拋物線的解析式為,從而求出a的值,然后確定拋物線的解析式.【詳解】解:依題意得此函數(shù)解析式頂點為,∴設(shè)解析式為,又函數(shù)圖象經(jīng)過,,,.故答案為.【考點】本題主要考查用待定系數(shù)法確定二次函數(shù)的解析式,解題時應(yīng)根據(jù)情況設(shè)拋物線的解析式從而使解題簡單,此題設(shè)為頂點式比較簡單.5、y=3x2-2或y=-3x2-2【解析】【分析】根據(jù)二次函數(shù)的圖象特點即可分類求解.【詳解】二次函數(shù)的圖象與拋物線y=3x2的形狀相同,說明它們的二次項系數(shù)的絕對值相等,故本題有兩種可能,即y=3x2-2或y=-3x2-2.故答案為y=3x2-2或y=-3x2-2.【考點】此題主要考查二次函數(shù)的圖象,解題的關(guān)鍵是熟知二次函數(shù)形狀相同,二次項系數(shù)的絕對值相等.四、解答題1、(6-)s【解析】【分析】設(shè)點E運動的時間是x秒.根據(jù)題意可得方程,解方程即可得到結(jié)論.【詳解】解:設(shè)點E運動的時間是xs.根據(jù)題意可得22+(2x)2=(3-2x)2+x2,解這個方程得x1=6-,x2=6+,∵3÷2=1.5(s),2÷1=2(s),∴兩點運動了1.5s后停止運動.∴x=6-.答:當(dāng)△AEF是以AF為底邊的等腰三角形時,點E運動的時間是(6-)s.【考點】本題考查了一元二次方程的應(yīng)用,考查了矩形的性質(zhì),等腰三角形的判定及性質(zhì),勾股定理的運用.2、(1)y=﹣x2+2x+3;(2)①S四邊形ACFD=4;②Q點坐標(biāo)為(1,4)或(,)或(,).【解析】【分析】此題涉及的知識點是拋物線的綜合應(yīng)用,難度較大,需要有很好的邏輯思維,解題時先根據(jù)已知點的坐標(biāo)列方程求出函數(shù)解析式,然后再根據(jù)解析式和已知條件求出四邊形的面積和點的坐標(biāo).【詳解】(1)由題意可得,解得,∴拋物線解析式為y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x軸,∵A(﹣1,0),∴S四邊形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵點P在線段AB上,∴∠DAQ不可能為直角,∴當(dāng)△AQD為直角三角形時,有∠ADQ=90°或∠AQD=90°,i.當(dāng)∠ADQ=90°時,則DQ⊥AD,∵A(﹣1,0),D(2,3),∴直線AD解析式為y=x+1,∴可設(shè)直線DQ解析式為y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直線DQ解析式為y=﹣x+5,聯(lián)立直線DQ和拋物線解析式可得,解得或,∴Q(1,4);ii.當(dāng)∠AQD=90°時,設(shè)Q(t,﹣t2+2t+3),設(shè)直線AQ的解析式為y=k1x+b1,把A、Q坐標(biāo)代入可得,解得k1=﹣(t﹣3),設(shè)直線DQ解析式為y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,當(dāng)t=時,﹣t2+2t+3=,當(dāng)t=時,﹣t2+2t+3=,∴Q點坐標(biāo)為(,)或(,);綜上可知Q點坐標(biāo)為(1,4)或(,)或(,).【考點】此題重點考察學(xué)生對于拋物線的綜合應(yīng)用能力,熟練拋物線的圖像和性質(zhì),四邊形面積的計算方法,點坐標(biāo)的求解方式是解答本題的關(guān)鍵.3、見解析【解析】【分析】先確定圓心,再確定圓的半徑,畫圓即可.【詳解】解:如圖,①連接、,②作線段的垂直平分線交的延長線于一點,交點即為,③以為圓心,或的長度為半徑作圓,④即為所求.【考點】本題考查了確定圓的條件和相切兩圓的性質(zhì),作圖是難點,注:確定圓,即確定圓心和半徑.4、(1)見詳解;(2)①見詳解;②當(dāng)?shù)拈L度為2或時,為等腰三角形【解析】【分析】(1)由旋轉(zhuǎn)的性質(zhì)得AH=AG,∠HAG=90°,從而得∠BAH=∠CAG,進(jìn)而即可得到結(jié)論;(2)①由,得AH=AG,再證明,進(jìn)而即可得到結(jié)論;②為等腰三角形,分3種情況:(a)當(dāng)∠QAG=∠QGA=45°時,(b)當(dāng)∠GAQ=∠GQA=67.5°時,(c)當(dāng)∠AQG=∠AGQ=45°時,分別畫出圖形求解,即可.【詳解】解:(1)∵線段繞點A逆時針方向旋

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論