版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖北省枝江市中考數(shù)學(xué)真題分類(lèi)(勾股定理)匯編專(zhuān)項(xiàng)攻克考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,嘉嘉在A時(shí)測(cè)得一棵4米高的樹(shù)的影長(zhǎng)為,若A時(shí)和B時(shí)兩次日照的光線互相垂直,則B時(shí)的影長(zhǎng)為(
)A. B. C. D.2、小明想知道學(xué)校旗桿的高,他發(fā)現(xiàn)旗桿上的繩子垂到地面還多1m,當(dāng)它把繩子的下端拉開(kāi)4m后,發(fā)現(xiàn)下端剛好接觸地面,則旗桿的高為(
)A.7m B.7.5m C.8m D.9m3、如圖,在Rt△ACB和Rt△DCE中,AC=BC=2,CD=CE,∠CBD=15°,連接AE,BD交于點(diǎn)F,則BF的長(zhǎng)為(
)A. B. C. D.4、在△ABC中,AB=10,AC=2,BC邊上的高AD=6,則另一邊BC等于(
)A.10 B.8 C.6或10 D.8或105、如圖,在△ABC中,AB=6,AC=9,AD⊥BC于D,M為AD上任一點(diǎn),則MC2-MB2等于(
)A.29 B.32 C.36 D.456、下列各組數(shù)據(jù)為三角形的三邊,能構(gòu)成直角三角形的是(
)A.4,8,7 B.2,2,2 C.2,2,4 D.13,12,57、在△ABC中,∠A,∠B,∠C的對(duì)邊分別記為a,b,c,下列結(jié)論中不正確的是(
)A.如果a2=b2?c2,那么△ABC是直角三角形且∠A=90°B.如果∠A:∠B:∠C=1:2:3,那么△ABC是直角三角形C.如果,那么△ABC是直角三角形D.如果,那么△ABC是直角三角形第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,在矩形中,,垂足為點(diǎn).若,,則的長(zhǎng)為_(kāi)_____.2、如圖,臺(tái)風(fēng)過(guò)后,某希望小學(xué)的旗桿在離地某處斷裂,且旗桿頂部落在離旗桿底部8m處,已知旗桿原長(zhǎng)16m,你能求出旗桿在離底部________m位置斷裂.3、如圖,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,點(diǎn)E在BC上,將△ABC沿AE折疊,使點(diǎn)B落在AC邊上的點(diǎn)B′處,則BE的長(zhǎng)為_(kāi)_______________.4、如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周長(zhǎng)為15+9,則CD的長(zhǎng)為_(kāi)____.5、《九章算術(shù)》中有“折竹抵地”問(wèn)題:“今有竹高一丈,末折抵地,去根三尺,問(wèn)折者高幾何?”題意是:有一根竹子原來(lái)高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問(wèn)折斷處離地面多高?如圖,設(shè)折斷處距離地面x尺,根據(jù)題意,可列方程為_(kāi)_____.6、在繼承和發(fā)揚(yáng)紅色學(xué)校光榮傳統(tǒng),與時(shí)俱進(jìn),把育英學(xué)校建成一所文明的、受社會(huì)尊敬的學(xué)校升旗儀式上,如圖所示,一根旗桿的升旗的繩垂直落地后還剩余1米,若將繩子拉直,則繩端離旗桿底端的距離有5米.則旗桿的高度______.7、如圖,一艘輪船位于燈塔P的南偏東方向,距離燈塔50海里的A處,它沿正北方向航行一段時(shí)間后,到達(dá)位于燈塔P的北偏東方向上的B處,此時(shí)B處與燈塔P的距離為_(kāi)__________海里(結(jié)果保留根號(hào)).8、《九章算術(shù)》中有一道“引葭赴岸”問(wèn)題:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.問(wèn)水深,葭長(zhǎng)各幾何?”題意是:有一個(gè)池塘,其底面是邊長(zhǎng)為10尺的正方形,一棵蘆葦AB生長(zhǎng)在它的中央,高出水面部分BC為1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳緽恰好碰到岸邊的B'(如圖).則蘆葦長(zhǎng)_____尺.三、解答題(7小題,每小題10分,共計(jì)70分)1、小明爸爸給小明出了一道題:如圖,修公路遇到一座山,于是要修一條隧道.已知A,B,C在同一條直線上,為了在小山的兩側(cè)B,C同時(shí)施工,過(guò)點(diǎn)B作一直線m(在山的旁邊經(jīng)過(guò)),過(guò)點(diǎn)C作一直線l與m相交于D點(diǎn),經(jīng)測(cè)量,,米,米.若施工隊(duì)每天挖100米,求施工隊(duì)幾天能挖完?2、(1)圖1是由有20個(gè)邊長(zhǎng)為1的正方形組成的,把它按圖1的分割方法分割成5部分后可拼接成一個(gè)大正方形(內(nèi)部的粗實(shí)線表示分割線),請(qǐng)你在圖2的網(wǎng)格中畫(huà)出拼接成的大正方形.(2)如果(1)中分割成的直角三角形兩直角邊分別為a,b斜邊為c.請(qǐng)你利用圖2中拼成的大正方形證明勾股定理.(3)應(yīng)用:測(cè)量旗桿的高度:校園內(nèi)有一旗桿,小希想知道旗桿的高度,經(jīng)觀察發(fā)現(xiàn)從頂端垂下一根拉繩,于是他測(cè)出了下列數(shù)據(jù):①測(cè)得拉繩垂到地面后,多出的長(zhǎng)度為0.5米;②他在距離旗桿4米的地方拉直繩子,拉繩的下端恰好距離地面0.5米.請(qǐng)你根據(jù)所測(cè)得的數(shù)據(jù)設(shè)計(jì)可行性方案,解決這一問(wèn)題.(畫(huà)出示意圖并計(jì)算出這根旗桿的高度).3、超速行駛是引發(fā)交通事故的主要原因.上周末,小鵬等三位同學(xué)在濱海大道紅樹(shù)林路段,嘗試用自己所學(xué)的知識(shí)檢測(cè)車(chē)速,觀測(cè)點(diǎn)設(shè)在到公路l的距離為100米的P處.這時(shí),一輛富康轎車(chē)由西向東勻速駛來(lái),測(cè)得此車(chē)從A處行駛到B處所用的時(shí)間為3秒,并測(cè)得∠APO=60°,∠BPO=45°,試判斷此車(chē)是否超過(guò)了每小時(shí)80千米的限制速度?4、如圖所示,△ABC的兩條高AD,BE相交于點(diǎn)F,AC=BC.(1)求證:△ADC≌△BEC.(2)若CD=1,BE=2,求線段AC的長(zhǎng).5、臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心在周?chē)习偾椎姆秶鷥?nèi)形成極端氣候,有極強(qiáng)的破壞力,如圖,有一臺(tái)風(fēng)中心沿東西方向由行駛向,已知點(diǎn)為海港,并且點(diǎn)與直線上的兩點(diǎn),的距離分別為,,又,以臺(tái)風(fēng)中心為圓心周?chē)?50km以?xún)?nèi)為受影響區(qū)域.(1)求的度數(shù);(2)海港受臺(tái)風(fēng)影響嗎?為什么?6、如圖,一個(gè)長(zhǎng)5m的梯子AB,斜靠在一豎直的墻AO上,這時(shí)AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點(diǎn).(1)求梯子底端B外移距離BD的長(zhǎng)度;(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.7、某海上有一小島,為了測(cè)量小島兩端A,B的距離,測(cè)量人員設(shè)計(jì)了一種測(cè)量方法,如圖,已知B是CD的中點(diǎn),E是BA延長(zhǎng)線上的一點(diǎn),且∠CED=90°,測(cè)得AE=16.6海里,DE=60海里,CE=80海里.(1)求小島兩端A,B的距離.(2)過(guò)點(diǎn)C作CF⊥AB交AB的延長(zhǎng)線于點(diǎn)F,求值.-參考答案-一、單選題1、A【解析】【分析】根據(jù)勾股定理,求出FC=,令DE=x,在Rt中,EC2=,在Rt中,EC2==,代入求解即可.【詳解】解:由題意,得∠ECF=∠CDF=∠CDE=90°,CD=4m,=,由勾股定理,得FC=,EC2=,EC2=,∴=,令DE=x,則EF=x+8,∴,整理,得16x=32,解得x=2.故選:A.【考點(diǎn)】本題考查利用勾股定理求線段長(zhǎng),拓展一元一次方程,正確的運(yùn)算能力是解決問(wèn)題的關(guān)鍵.2、B【解析】【分析】根據(jù)題意,畫(huà)出圖形,設(shè)旗桿AB=x米,則AC=(x+1)米,在Rt△ABC中,根據(jù)勾股定理的方程(x+1)2=x2+42,解方程求得x的值即可.【詳解】如圖所示:設(shè)旗桿AB=x米,則AC=(x+1)米,在Rt△ABC中,AC2=AB2+BC2,即(x+1)2=x2+42,解得:x=7.5.故選B.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,解決本題的基本思路是是畫(huà)出示意圖,利用勾股定理列方程求解.3、B【解析】【分析】由已知證得,進(jìn)而確定三個(gè)內(nèi)角的大小,求得,進(jìn)而可得到答案.【詳解】解:∵∴∴又∵∴∴∵在等腰直角三角形中∴∴∴∵∴故選:B.【考點(diǎn)】本題考查全等三角形的判定和性質(zhì),勾股定理;熟練掌握相關(guān)知識(shí)是解題的關(guān)鍵.4、C【解析】【詳解】分兩種情況:在圖①中,由勾股定理,得;;∴BC=BD+CD=8+2=10.在圖②中,由勾股定理,得;;∴BC=BD―CD=8―2=6.故選C.5、D【解析】【分析】在Rt△ABD及Rt△ADC中可分別表示出BD2及CD2,在Rt△BDM及Rt△CDM中分別將BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出結(jié)果.【詳解】解:在Rt△ABD和Rt△ADC中,BD2=AB2?AD2,CD2=AC2?AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2?AD2+MD2,MC2=CD2+MD2=AC2?AD2+MD2,∴MC2?MB2=(AC2?AD2+MD2)?(AB2?AD2+MD2)=AC2?AB2=45.故選:D.【考點(diǎn)】本題考查了勾股定理的知識(shí),題目有一定的技巧性,比較新穎,解答本題需要認(rèn)真觀察,分別兩次運(yùn)用勾股定理求出MC2和MB2是本題的難點(diǎn),重點(diǎn)還是在于勾股定理的熟練掌握.6、D【解析】【分析】根據(jù)勾股定理的逆定理,看較小的兩邊的平方和是否等于最大的邊的平方即可進(jìn)行判斷.【詳解】A、42+72≠82,故不能構(gòu)成直角三角形;B、22+22≠22,故不能構(gòu)成直角三角形;C、2+2=4,故不能構(gòu)成三角形,不能構(gòu)成直角三角形;D、52+122=132,故能構(gòu)成直角三角形,故選D.【考點(diǎn)】本題考查的是用勾股定理的逆定理判斷三角形的形狀,即若三角形的三邊符合a2+b2=c2,則此三角形是直角三角形.7、A【解析】【分析】根據(jù)直角三角形的判定和勾股定理的逆定理解答即可.【詳解】解:A、如果
a2=b2-c2,即b2=a2+c2,那么△ABC
是直角三角形且∠B=90°,選項(xiàng)錯(cuò)誤,符合題意;B、如果∠A:∠B:∠C=1:2:3,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC
是直角三角形,選項(xiàng)正確,不符合題意;C、如果
a2:b2:c2=9:16:25,滿(mǎn)足a2+b2=c2,那么△ABC
是直角三角形,選項(xiàng)正確,不符合題意;D、如果∠A-∠B=∠C,由∠A+∠B+∠C=180°,可得∠A=90°,那么△ABC
是直角三角形,選項(xiàng)正確,不符合題意;故選:A.【考點(diǎn)】本題考查的是直角三角形的判定和勾股定理的逆定理的應(yīng)用,如果三角形的三邊長(zhǎng)a,b,c滿(mǎn)足a2+b2=c2,那么這個(gè)三角形就是直角三角形.二、填空題1、3【解析】【分析】在中,由正弦定義解得,再由勾股定理解得DE的長(zhǎng),根據(jù)同角的余角相等,得到,最后根據(jù)正弦定義解得CD的長(zhǎng)即可解題.【詳解】解:在中,在矩形中,故答案為:3.【考點(diǎn)】本題考查矩形的性質(zhì)、正弦、勾股定理等知識(shí),是重要考點(diǎn),難度較易,掌握相關(guān)知識(shí)是解題關(guān)鍵.2、6【解析】【分析】設(shè),則,在中,利用勾股定理列方程,即可求解.【詳解】解:如圖,由題意知,,,設(shè),則,在中,,即,解得,因此旗桿在離底部6m位置斷裂.故答案為:6.【考點(diǎn)】本題考查勾股定理的實(shí)際應(yīng)用,讀懂題意,根據(jù)勾股定理列出方程是解題的關(guān)鍵.3、.【解析】【分析】首先根據(jù)勾股定理求出BC的長(zhǎng),根據(jù)折疊性質(zhì),可得=AB=3,=BE,∠B=∠=90°,然后設(shè)BE=,根據(jù)勾股定理,列出,求解即可.【詳解】解:∵∠ABC=90°,AB=3,AC=5,在Rt△ABC中,,將△ABC沿AE折疊,∴=AB=3,=BE,∠B=∠=90°,則,設(shè)BE=,EC=4-,,在Rt△中,由勾股定理得:,即,解得,∴BE=.故答案為.【考點(diǎn)】本題主要考查了翻折變換的性質(zhì)及勾股定理的應(yīng)用;解題的關(guān)鍵是準(zhǔn)確找出圖形中隱含的相等關(guān)系.4、6【解析】【分析】由已知條件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面積即可得出答案.【詳解】解:∵Rt△ABC的周長(zhǎng)為15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405?225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD==6;故答案為:6.【考點(diǎn)】本題考查了勾股定理,三角形的面積公式,完全平方公式,三角形的周長(zhǎng)的計(jì)算,熟記直角三角形的性質(zhì)是解題的關(guān)鍵.5、【解析】【分析】根據(jù)勾股定理即可得出結(jié)論.【詳解】解:設(shè)未折斷的竹干長(zhǎng)為尺,根據(jù)題意可列方程為:.故答案為:.【考點(diǎn)】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實(shí)際問(wèn)題時(shí)勾股定理與方程的結(jié)合是解決實(shí)際問(wèn)題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫(huà)出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.6、12米【解析】【分析】設(shè)旗桿的高度是x米,繩子長(zhǎng)為(x+1)米,旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求出x的值,從而求出旗桿的高度.【詳解】解:設(shè)旗桿的高度為米,根據(jù)題意可得:,解得:,答:旗桿的高度為12米.故答案為:12米.【考點(diǎn)】本題考查勾股定理的應(yīng)用,關(guān)鍵看到旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求解.7、.【解析】【分析】先作PC⊥AB于點(diǎn)C,然后利用勾股定理進(jìn)行求解即可.【詳解】解:如圖,作PC⊥AB于點(diǎn)C,在Rt△APC中,AP=50海里,∠APC=90°-60°=30°,∴海里,海里,在Rt△PCB中,PC=海里,∠BPC=90°-45°=45°,∴PC=BC=海里,∴海里,故答案為:.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用-方向角問(wèn)題,求三角形的邊或高的問(wèn)題一般可以轉(zhuǎn)化為用勾股定理解決問(wèn)題,解決的方法就是作高線.8、13【解析】【分析】將其轉(zhuǎn)化為數(shù)學(xué)幾何圖形,如圖所示,根據(jù)題意,可知B'C=5尺,設(shè)水深A(yù)C=x尺,則蘆葦長(zhǎng)(x+1)尺,根據(jù)勾股定理建立方程,求出的方程的解即可得到蘆葦?shù)拈L(zhǎng)和水深.【詳解】解:設(shè)水深x尺,則蘆葦長(zhǎng)(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故蘆葦長(zhǎng)13尺,故答案為:13【考點(diǎn)】本題考查勾股定理,和列方程解決實(shí)際問(wèn)題,能夠在實(shí)際問(wèn)題中找到直角三角形并應(yīng)用勾股定理是解決本題的關(guān)鍵.三、解答題1、施工隊(duì)6天能挖完.【解析】【分析】根據(jù)題意可得∠BCD=90°,再利用勾股定理得出BC,繼而即可求解.【詳解】解:∵,∴,∵米,米,∴(米)故(天)答:施工隊(duì)6天能挖完.【考點(diǎn)】本題考查外角的性質(zhì),勾股定理的應(yīng)用,解題的關(guān)鍵是利用勾股定理求得∠BCD=90°.2、(1)見(jiàn)解析;(2)見(jiàn)解析;(3)在四邊形ABCD中,AB⊥BC,DC⊥BC,AD比AB長(zhǎng)0.5米,BC=4米,CD=0.5米,求AB的長(zhǎng);8米【解析】【分析】(1)將圖1分割成五塊:四個(gè)直角邊分別為1、2的直角三角形,一個(gè)邊長(zhǎng)為2的正方形,再在圖2中,拼成邊長(zhǎng)為的正方形即可.(2)根據(jù)20個(gè)小正方形的面積的和等于拼成的正方形的面積,根據(jù)勾股定理確定截線的長(zhǎng)度即可;(3)根據(jù)題意,畫(huà)出圖形,可將該問(wèn)題抽象為解直角三角形問(wèn)題,該直角三角形的斜邊比其中一條直角邊多1m,而另一條直角邊長(zhǎng)為5m,可以根據(jù)勾股定理求出斜邊的長(zhǎng)即可.【詳解】解:(1)如圖(2)==∴(3)如圖,在四邊形ABCD中,AB⊥BC,DC⊥BC,AD比AB長(zhǎng)0.5米,BC=4米,CD=0.5米,求AB的長(zhǎng).解:過(guò)點(diǎn)D作DE⊥AB,垂足為E∵AB⊥BC,DC⊥BC∴∠B=∠C=∠DEB=90o∴四邊形BCDE是矩形∴ED=BC=4,BE=DC=0.5設(shè)AB=,則AD=+0.5,AE=-0.5
在RtΔAED中AD2=AE2+ED2(+0.5)2=(-0.5)2+42解得:=8答:旗桿的高為8米.【考點(diǎn)】本題考查作圖的運(yùn)用及設(shè)計(jì)作圖和勾股定理的應(yīng)用,解題的關(guān)鍵是學(xué)會(huì)利用數(shù)形結(jié)合的思想解決問(wèn)題,屬于中考??碱}型.3、此車(chē)超過(guò)每小時(shí)80千米的限制速度.【解析】【分析】首先,根據(jù)在直角三角形BPO中,∠BPO=45°,可得到BO=PO=100m,再根據(jù)在直角三角形APO中,∠APO=60°,運(yùn)用三角函數(shù)值,可得到AO=100,根據(jù)AB=AO-BO可求得AB的長(zhǎng);再結(jié)合速度的計(jì)算方法,求出車(chē)的速度,然后將車(chē)的速度與80千米/時(shí)進(jìn)行比較,即可得到結(jié)論.【詳解】解:在Rt△APO中,∠APO=60°,則∠PAO=30°.∴AP=2OP=200m,AO===100(m).在Rt△BOP中,∠BPO=45°,則BO=OP=100m.∴AB=AO-BO=100-100≈73(m).∴從A到B小車(chē)行駛的速度為73÷3≈24.3(m/s)=87.48km/h>80km/h.∴此車(chē)超過(guò)每小時(shí)80千米的限制速度.【考點(diǎn)】本題考查了解直角三角形的應(yīng)用,從復(fù)雜的實(shí)際問(wèn)題中整理出直角三角形并求解是解決此類(lèi)題目的關(guān)鍵.4、(1)見(jiàn)解析(2)【解析】【分析】(1)由AD⊥BC,BE⊥AC得∠BEC=∠ADC=90°,可證∠DAC=∠CBE,根據(jù)AAS可證△ADC≌△BEC;(2)由△ADC≌△BEC,得CD=CE=1,根據(jù)勾股定理可求.(1)證明:∵AD⊥BC,BE⊥AC,∴∠BEC=∠ADC=90°∴∠C+∠DAC=90°=∠C+∠CBE,∴∠DAC=∠CBE在△ADC和△BEC中,∴△ADC≌△BEC(AAS);(2)解:∵△ADC≌△BEC,∴CD=CE=1,∴BC===,∴AC=BC=【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),勾股定理,熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.5、(1)90°;(2)受臺(tái)風(fēng)影響,理由見(jiàn)解析【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進(jìn)而得出∠ACB的度數(shù);(2)利用三角形面積得出CD的長(zhǎng),進(jìn)而得出海港C是否受臺(tái)風(fēng)影響.【詳解】解:(1)∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受臺(tái)風(fēng)影響,理由:過(guò)點(diǎn)C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以臺(tái)風(fēng)中心為圓心周?chē)?50km以?xún)?nèi)為受影響區(qū)域,∴海港C受臺(tái)風(fēng)影響.【考點(diǎn)】本題考查的是勾股定理在實(shí)際生活中的運(yùn)用,解答此類(lèi)題目的關(guān)鍵是構(gòu)造出直角三角形,再利用勾股定理解答.6、(1)BD=1m;(2)CE與BE的大小關(guān)系是CE=BE,證明見(jiàn)解析.【解析】【分析】(1)利用勾股定理求出OB,求出OC,再根據(jù)勾股定理求出OD,即可求出
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年托業(yè)考試備考題集商務(wù)英語(yǔ)溝通技能強(qiáng)化
- 2026年海運(yùn)集裝箱租賃合同
- 2026年施工現(xiàn)場(chǎng)圖紙管理合同
- 2026年國(guó)家科技成果評(píng)價(jià)試點(diǎn)服務(wù)合同
- 安全員A證考試考試模擬試卷附答案詳解【滿(mǎn)分必刷】
- 食品安全游戲題目及答案
- 初級(jí)網(wǎng)絡(luò)安全工程師題庫(kù)及答案
- 安全員A證考試測(cè)試卷附完整答案詳解(名師系列)
- 江蘇省大學(xué)生就業(yè)創(chuàng)業(yè)知識(shí)競(jìng)賽題庫(kù)及答案
- 2025年廣告創(chuàng)意總監(jiān)廣告文案評(píng)審考試試題及答案解析
- 《電子商務(wù)師(三級(jí))理論知識(shí)鑒定要素細(xì)目表》
- 警察警械使用培訓(xùn)課件
- 中職團(tuán)建活動(dòng)方案
- 2025壓覆礦產(chǎn)資源調(diào)查評(píng)估規(guī)范
- 開(kāi)放性氣胸的臨床護(hù)理
- 鞏膜炎的治療
- DBJ52T-既有建筑幕墻安全性檢測(cè)鑒定技術(shù)規(guī)程
- 運(yùn)輸管理實(shí)務(wù)(第二版)李佑珍課件第6章 集裝箱多式聯(lián)運(yùn)學(xué)習(xí)資料
- 影片備案報(bào)告范文
- 心臟驟停應(yīng)急預(yù)案及流程
- 播種施肥機(jī)械
評(píng)論
0/150
提交評(píng)論