解析卷-重慶市實驗中學7年級數(shù)學下冊第四章三角形單元測試試卷(含答案詳解版)_第1頁
解析卷-重慶市實驗中學7年級數(shù)學下冊第四章三角形單元測試試卷(含答案詳解版)_第2頁
解析卷-重慶市實驗中學7年級數(shù)學下冊第四章三角形單元測試試卷(含答案詳解版)_第3頁
解析卷-重慶市實驗中學7年級數(shù)學下冊第四章三角形單元測試試卷(含答案詳解版)_第4頁
解析卷-重慶市實驗中學7年級數(shù)學下冊第四章三角形單元測試試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩28頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市實驗中學7年級數(shù)學下冊第四章三角形單元測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(10小題,每小題2分,共計20分)1、三根小木棒擺成一個三角形,其中兩根木棒的長度分別是和,那么第三根小木棒的長度不可能是()A. B. C. D.2、下列長度的三條線段能組成三角形的是()A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,73、下列所給的各組線段,能組成三角形的是:()A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,134、如圖,在正方形ABCD中,E,F(xiàn)分別為AD,CD上的點,且AE=CF,則下列說法正確的是()A.∠1﹣∠2=90° B.∠1=∠2+45° C.∠1+∠2=180° D.∠1=2∠25、已知:如圖,∠BAD=∠CAE,AB=AD,∠B=∠D,則下列結論正確的是()A.AC=DE B.∠ABC=∠DAE C.∠BAC=∠ADE D.BC=DE6、如圖是5×5的正方形網(wǎng)格中,以D,E為頂點作位置不同的格點的三角形與△ABC全等,這樣格點三角形最多可以畫出()A.2個 B.3個 C.4個 D.5個7、滿足下列條件的兩個三角形不一定全等的是()A.周長相等的兩個三角形 B.有一腰和底邊對應相等的兩個等腰三角形C.三邊都對應相等的兩個三角形 D.兩條直角邊對應相等的兩個直角三角形8、如圖,,,,則下列結論:①;②;③;④.成立的是()A.①②③ B.①②④ C.②③④ D.①②③④9、以下列各組線段為邊,能組成三角形的是()A.2cm、10cm、13cm B.3cm、7cm、4cmC.4cm、4cm、4cm D.5cm、14cm、6cm10、如圖,ABC的面積為18,AD平分∠BAC,且AD⊥BD于點D,則ADC的面積是()A.8 B.10 C.9 D.16第Ⅱ卷(非選擇題80分)二、填空題(10小題,每小題2分,共計20分)1、如圖,AE與BD相交于點C,AC=EC,BC=DC,AB=5cm,點P從點A出發(fā),沿A→B方向以2cm/s的速度運動,點Q從點D出發(fā),沿D→E方向以1cm/s的速度運動,P、Q兩點同時出發(fā).當點P到達點B時,P、Q兩點同時停止運動.設點P的運動時間為t(s).(1)AP的長為___cm.(用含t的代數(shù)式表示)(2)連接PQ,當線段PQ經(jīng)過點C時,t=___s.2、如圖,,,、分別為線段和射線上的一點,若點從點出發(fā)向點運動,同時點從點出發(fā)向點運動,二者速度之比為,運動到某時刻同時停止,在射線上取一點,使與全等,則的長為________.3、如圖,在△ABC中,AD平分∠CAB,BD⊥AD,已知△ADC的面積為14,△ABD的面積為10,則△ABC的面積為______.4、如圖,點F,A,D,C在同一條直線上,,,,則AC等于_____.5、我們將一副三角尺按如圖所示的位置擺放,則_______°.6、如圖,在△ABC中,∠C=90°,AD是BC邊上的中線,交BC于點D,CD=5cm,AC=12cm,則△ABD的面積是__________cm2.7、在平面直角坐標系中,點B(0,4),點A為x軸上一動點,連接AB.以AB為邊作等腰Rt△ABE,(B、A、E按逆時針方向排列,且∠BAE為直角),連接OE.當OE最小時,點E的縱坐標為______.8、如圖,正三角形△ABC和△CDE,A,C,E在同一直線上,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的結論有_____.(填序號)9、如圖,AC平分∠DAB,要使△ABC≌△ADC,需要增加的一個條件是____.10、如圖,在中,已知點,,分別為,,的中點,且,則陰影部分的面積______.三、解答題(6小題,每小題10分,共計60分)1、如圖,(1),已知△ABC中,∠BAC=90°,,AE是過點A的一條直線,且B,C在A,E的異側,于點D,于點E(1)試說明:;(2)若直線AE繞點A旋轉到圖(2)位置時,其余條件不變,問BD與DE,CE的關系如何?請直接寫出結果;2、在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.(感知)(1)當直線MN繞點C旋轉到圖①的位置時,易證△ADC≌△CEB(不需要證明),進而得到DE、AD、BE之間的數(shù)量關系為.(探究)(2)當直線MN繞點C旋轉到圖②的位置時,求證:DE=AD-BE.(3)當直線MN繞點C旋轉到圖③的位置時,直接寫出DE、AD、BE之間的數(shù)量關系.3、如圖,點E,F(xiàn)在BC上,BE=CF,∠A=∠D,∠B=∠C,求證:AB=DC.4、(1)如圖1,已知中,90°,,直線經(jīng)過點直線,直線,垂足分別為點.求證:.證明:(2)如圖2,將(1)中的條件改為:在中,三點都在直線上,并且有.請寫出三條線段的數(shù)量關系,并說明理由.5、如圖1,AE與BD相交于點C,AC=EC,BC=DC.(1)求證:ABDE;(2)如圖2,過點C作PQ交AB于P,交DE于Q,求證:CP=CQ.(3)如圖3,若AB=4cm,點P從點A出發(fā),沿A→B→A方向以3cm/s的速度運動,點Q從點D出發(fā),沿D→E方向以1cm/s的速度運動,P、Q兩點同時出發(fā).當點P到達點A時,P、Q兩點同時停止運動.設點P的運動時間為t(s).連接PQ,當線段PQ經(jīng)過點C時,直接寫出t的值為.6、已知:如圖,AD,BE相交于點O,AB⊥BE,DE⊥AD,垂足分別為B,D,OA=OE.求證:△ABO≌△EDO.-參考答案-一、單選題1、D【分析】設第三根木棒長為x厘米,根據(jù)三角形的三邊關系可得8﹣5<x<8+5,確定x的范圍即可得到答案.【詳解】解:設第三根木棒長為x厘米,由題意得:8﹣5<x<8+5,即3<x<13,故選:D.【點睛】此題主要考查了三角形的三邊關系,要注意三角形形成的條件:任意兩邊之和>第三邊,任意兩邊之差<第三邊.2、C【分析】根據(jù)三角形的三邊關系,逐項判斷即可求解.【詳解】解:A、因為,所以不能組成三角形,故本選項不符合題意;B、因為,所以不能組成三角形,故本選項不符合題意;C、因為,所以能組成三角形,故本選項符合題意;D、因為,所以不能組成三角形,故本選項不符合題意;故選:C【點睛】本題主要考查了三角形的三邊關系,熟練掌握三角形的兩邊之和大于第三邊,兩邊之差小于第三邊是解題的關鍵.3、D【分析】根據(jù)三角形三邊關系定理,判斷選擇即可.【詳解】∵2+11=13,∴A不符合題意;∵5+7=12,∴B不符合題意;∵5+5=10<11,∴C不符合題意;∵5+12=17>13,∴D符合題意;故選D.【點睛】本題考查了構成三角形的條件,熟練掌握三角形三邊關系是解題的關鍵.4、C【分析】由“SAS”可證△ABE≌△CBF,可得∠AEB=∠2,即可求解.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC,∠A=∠C=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴∠AEB=∠2,∵∠AEB+∠1=180°,∴∠1+∠2=180°,故選:C.【點睛】本題考查了正方形的性質,全等三角形的判定和性質,證明三角形全等是解題的關鍵.5、D【分析】根據(jù)已知條件利用ASA證明可得AC=AE,BC=DE,進而逐一進行判斷.【詳解】解:∵∠BAD=∠CAE,∴∠BAD-∠CAD=∠CAE-∠CAD,即∠BAC=∠DAE,所以B、C選項錯誤;在和中,,∴(ASA),∴AC=AE,BC=DE.所以A選項錯誤;D選項正確.故選:D.【點睛】本題考查了全等三角形的判定與性質,解決本題的關鍵是掌握全等三角形的判定與性質.6、C【分析】觀察圖形可知:DE與AC是對應邊,B點的對應點在DE上方兩個,在DE下方兩個共有4個滿足要求的點,也就有四個全等三角形.【詳解】根據(jù)題意,運用“SSS”可得與△ABC全等的三角形有4個,線段DE的上方有兩個點,下方也有兩個點,如圖.故選C.【點睛】本題考查三角形全等的判定方法,解答本題的關鍵是按照順序分析,要做到不重不漏.7、A【分析】根據(jù)全等三角形的判定方法求解即可.判定三角形全等的方法有:SSS,SAS對各選項進行一一判斷即可.【詳解】解:A、周長相等的兩個三角形不一定全等,符合題意;B、有一腰和底邊對應相等的兩個等腰三角形根據(jù)三邊對應相等判定定理可判定全等,不符合題意;C、三邊都對應相等的兩個三角形根據(jù)三邊對應相等判定定理可判定全等,不符合題意;D、兩條直角邊對應相等的兩個直角三角形根據(jù)SAS判定定理可判定全等,不符合題意.故選:A.【點睛】此題考查了全等三角形的判定方法,解題的關鍵是熟練掌握全等三角形的判定方法.判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形).8、B【分析】根據(jù)全等三角形的性質直接判定①②,則有,然后根據(jù)角的和差關系可判定③④.【詳解】解:∵,∴,故①②正確;∵,∴,故③錯誤,④正確,綜上所述:正確的有①②④;故選B.【點睛】本題主要考查全等三角形的性質,熟練掌握全等三角形的性質是解題的關鍵.9、C【分析】由題意根據(jù)“三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”對各選項進行逐一分析即可.【詳解】解:根據(jù)三角形的三邊關系,A、2+10<13,不能組成三角形,不符合題意;B、3+4=7,不能夠組成三角形,不符合題意;C、4+4>4,能組成三角形,符合題意;D、5+6<14,不能組成三角形,不符合題意.故選:C.【點睛】本題主要考查三角形三邊關系,注意掌握判斷能否組成三角形的簡便方法是看較小的兩個數(shù)的和是否大于第三個數(shù).10、C【分析】延長BD交AC于點E,根據(jù)角平分線及垂直的性質可得:,,依據(jù)全等三角形的判定定理及性質可得:,,再根據(jù)三角形的面積公式可得:SΔABD=SΔADE,SΔBDC=S【詳解】解:如圖,延長BD交AC于點E,∵AD平分,,∴,,在和中,,∴,∴,∴SΔABD=S∴SΔADC故選:C.【點睛】題目主要考查全等三角形的判定和性質,角平分線的定義等,熟練掌握基礎知識,進行邏輯推理是解題關鍵.二、填空題1、2【分析】(1)根據(jù)路程=速度×時間求解即可;(2)根據(jù)全等三角形在判定證明△ACB≌△ECD可得AB=DE,∠A=∠E,當PQ經(jīng)過點C時,可證得△ACP≌△ECQ,則有AP=EQ,進而可得出t的方程,解方程即可.【詳解】解:(1)由題意知:AP=2t,0<t≤,故答案為:2t;(2)∵AC=EC,∠ACB=∠ECD,BC=DC,∴△ACB≌△ECD(SAS),∴DE=AB=5cm,∠A=∠E,當PQ經(jīng)過點C時,∵∠A=∠E,AC=EC,∠ACP=∠ECQ,∴△ACP≌△ECQ(ASA),∴AP=EQ,又∵AP=2t,DQ=t,∴2t=5-t,解得:t=,故答案為:.【點睛】本題考查全等三角形的應用,熟練掌握全等三角形的判定與性質是解答的關鍵.2、2或6或2【分析】設BE=t,則BF=2t,使△AEG與△BEF全等,由∠A=∠B=90°可知,分兩種情況:情況一:當BE=AG,BF=AE時,列方程解得t,可得AG;情況二:當BE=AE,BF=AG時,列方程解得t,可得AG.【詳解】解:設BE=t,則BF=2t,AE=6-t,因為∠A=∠B=90°,使△AEG與△BEF全等,可分兩種情況:情況一:當BE=AG,BF=AE時,∵BF=AE,AB=6,∴2t=6-t,解得:t=2,∴AG=BE=t=2;情況二:當BE=AE,BF=AG時,∵BE=AE,AB=6,∴t=6-t,解得:t=3,∴AG=BF=2t=2×3=6,綜上所述,AG=2或AG=6.故答案為:2或6.【點睛】本題主要考查了全等三角形的性質,利用分類討論思想是解答此題的關鍵.3、28【分析】延長BD交AC于點E,可得△ABD≌△AED,則△ABD與△AED的面積相等,點D是BE的中點,從而△CED與△CBD的面積相等,且可求得△CED的面積,進而求得結果.【詳解】延長BD交AC于點E,如圖所示∵BD⊥AD∴∠ADB=∠ADE=90°∵AD平分∠CAB∴∠BAD=∠CAD∵AD=AD∴△ABD≌△AED(ASA)∴△ABD與△AED的面積相等,BD=ED∴點D是BE的中點∴△CED與△CBD的面積相等,且△CED的面積等于△ADC的面積與△ABD的面積的差,即為14-10=4∴△CBD的面積為4∴△ABC的面積=14+10+4=28故答案為:28【點睛】本題考查了全等三角形的判定與性質,三角形一邊上的中線平分此三角形的面積等知識,關鍵是構造輔助線并證明△ABD≌△AED.4、6.5【分析】由全等三角形的性質可得到AC=DF,從而推出AF=CD,再由,,求出,則.【詳解】解:∵△ABC≌△DEF,∴AC=DF,即AF+AD=CD+AD,∴AF=CD,∵,,∴,∴,∴,故答案為:6.5.【點睛】本題主要考查了全等三角形的性質,線段的和差,解題的關鍵在于能夠熟練掌握全等三角形的性質.5、45【分析】利用三角形的外角性質分別求得∠α和∠β的值,代入求解即可.【詳解】解:根據(jù)題意,∠A=60°,∠C=30°,∠D=∠DBG=45°,∠ABC=∠DGB=∠DGC=90°,∴∠β=∠DBG+∠C=75°,∠α=∠DGC+∠C=120°,∴∠α?∠β=120°-75°=45°,故答案為:45.【點睛】本題考查了三角形的外角性質,解答本題的關鍵是明確題意,找到三角板中隱含的角的度數(shù),利用數(shù)形結合的思想解答.6、30【分析】根據(jù)三角形的面積公式求出△ACD的面積,利用三角形中線的性質即可求解.【詳解】解:∵∠C=90°,CD=5cm,AC=12cm,∴△ACD的面積為(cm2),∵AD是BC邊上的中線,∴△ACD的面積=△ABD的面積為(cm2),故答案為:30.【點睛】本題考查了三角形的面積和三角形中線的性質,關鍵是根據(jù)三角形的中線把三角形分成面積相等的兩部分解答.7、-2【分析】過E作EF⊥x軸于F,由三垂直模型,得EF=OA,AF=OB,設A(a,0),可求得E(a+4,a),點E在直線y=x-4上,當OE⊥CD時,OE最小,據(jù)此求出坐標即可.【詳解】解:如圖,過E作EF⊥x軸于F,∵∠AOB=∠EFA=∠BAE=90°,∴∠ABO+∠OAB=90°,∠EAF+∠OAB=90°,∴∠ABO=∠EAF,∵AB=AE,∴△ABO≌△EAF,∴EF=OA,AF=OB=4,取點C(4,0),點D(0,-4),∴∠OCD=45°,∵CF=4-OF,OA=4-OF,∴CF=OA=EF,∴∠ECF=45°,∴點E在直線CD上,當OE⊥CD時,OE最小,此時△EFO和△ECO為等腰Rt△,∴OF=EF=2,此時點E的坐標為:(2,-2).故答案為:-2【點睛】本題考查了全等三角形的判定與性質,解題關鍵是確定點E運動的軌跡,確定點E的位置.8、①②③⑤【分析】①由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正確;②根據(jù)③△CQB≌△CPA(ASA),再根據(jù)∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據(jù)內錯角相等,兩直線平行,可知②正確;④根據(jù)∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④錯誤;⑤利用等邊三角形的性質,BC∥DE,再根據(jù)平行線的性質得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正確.【詳解】解:①∵等邊△ABC和等邊△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正確;③∵△ACD≌△BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP與△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正確;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正確;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠Q(mào)E,∴DP≠DE;故④錯誤;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等邊△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正確;綜上所述,正確的結論有:①②③⑤.故答案為:①②③⑤.【點睛】本題綜合考查等邊三角形判定與性質、全等三角形的判定與性質、平行線的判定與性質等知識點的運用.要求學生具備運用這些定理進行推理的能力.9、AB=AD(答案不唯一)【分析】根據(jù)SAS即可證明△ABC≌△ADC.【詳解】添加AB=AD,∵AC平分∠DAB,∴∠BAC=∠DAC又AC=AC∴△ABC≌△ADC(SAS)故答案為:AB=AD(答案不唯一).【點睛】此題主要考查全等三角形的判定,解題的關鍵是熟知全等三角形的判定定理.10、【分析】根據(jù)三角形中線性質,平分三角形面積,先利用AD為△ABC中線可得S△ABD=S△ACD,根據(jù)E為AD中點,,根據(jù)BF為△BEC中線,即可.【詳解】解:∵AD為△ABC中線∴S△ABD=S△ACD,又∵E為AD中點,故,∴,∵BF為△BEC中線,∴cm2.故答案為:1cm2.【點撥】本題考查了三角形中線的性質,牢固掌握并會運用是解題關鍵.三、解答題1、(1)證明見解析;(2)BD=DE-CE,理由見解析.【分析】(1)根據(jù)已知利用AAS判定△ABD≌△CAE從而得到BD=AE,AD=CE,因為AE=AD+DE,所以BD=DE+CE;(2)根據(jù)已知利用AAS判定△ABD≌△CAE從而得到BD=AE,AD=CE,因為AD+AE=BD+CE,所以BD=DE-CE.【詳解】解:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵AE=AD+DE,∴BD=DE+CE;(2)與、的數(shù)量關系是BD=DE-CE,理由如下:∵∠BAC=90°,BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=∠DAB+∠CAE,∴∠ABD=∠CAE,∵AB=AC,在△ABD和△CAE中,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∴AD+AE=BD+CE,∵DE=BD+CE,∴BD=DE-CE.【點睛】此題主要考查全等三角形的判定和性質,常用的判定方法有SSS,SAS,AAS,HL等.這種類型的題目經(jīng)??嫉?,要注意掌握.2、(1)DE=AD+BE;(2)見解析;(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等)【分析】(1)由已知推出∠ADC=∠BEC=90°,因為∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE,根據(jù)AAS即可得到△ADC≌△CEB,得到AD=CE,CD=BE,即可求出答案;(2)與(1)證法類似可證出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案;(3)與(1)(2)證法類似可證出∠ACD=∠EBC,能推出△ADC≌△CEB,得到AD=CE,CD=BE,代入已知即可得到答案;【詳解】解:(1)證明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∵DC+CE=DE,∴DE=AD+BE.(2)證明:∵AD⊥MN,BE⊥MN,∵∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.∵AC=BC,∴△ADC≌△CEB.∴CE=AD,CD=BE,∴DE=CE-CD=AD-BE;(3)DE=BE-AD,理由:∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD(或AD=BE-DE,BE=AD+DE等).【點睛】本題考查了鄰補角的意義,同角的余角相等,直角三角形的性質,全等三角形的判定和性質等知識點,能根據(jù)已知證出符合全等的條件是解此題的關鍵,題型較好,綜合性比較強.3、見解析【分析】根據(jù)“角角邊”證明△ABF≌△DCE即可.【詳解】證明:∵點E,F(xiàn)在BC上,BE=CF,∴BE+EF=CF+EF,即BF=CE;在△ABF和△DCE中,,∴△ABF≌△DCE(AAS),∴AB=CD(全等三角形的對應邊相等).【點睛】本題考查了全等三角形的判定與性質,解題關鍵是熟練運用全

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論