解析卷人教版8年級數(shù)學上冊《軸對稱》定向測評試題(含詳解)_第1頁
解析卷人教版8年級數(shù)學上冊《軸對稱》定向測評試題(含詳解)_第2頁
解析卷人教版8年級數(shù)學上冊《軸對稱》定向測評試題(含詳解)_第3頁
解析卷人教版8年級數(shù)學上冊《軸對稱》定向測評試題(含詳解)_第4頁
解析卷人教版8年級數(shù)學上冊《軸對稱》定向測評試題(含詳解)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《軸對稱》定向測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖是A,B,C三島的平面圖,C島在A島的北偏東35度方向,B島在A島的北偏東80度方向,C島在B島的北偏西55度方向,則A,B,C三島組成一個()A.等腰直角三角形 B.等腰三角形 C.直角三角形 D.等邊三角形2、如圖,等邊三角形ABC中,AD⊥BC,垂足為D,點E在線段AD上,∠EBC=45°,則∠ACE等于()A.15° B.30° C.45° D.60°3、北京2022年冬奧會會徽如圖所示,組成會徽的四個圖案中是軸對稱圖形的是(

)A. B. C. D.4、如圖,在小正三角形組成的網(wǎng)格中,已有個小正三角形涂黑,還需涂黑個小正三角形,使它們與原來涂黑的小正三角形組成的新圖案恰有三條對稱軸,則的最小值為()A. B. C. D.5、如圖,△ABC與△A′B′C′關于直線MN對稱,P為MN上任一點(A、P、A′不共線),下列結論中錯誤的是(

)A.△AA′P是等腰三角形 B.MN垂直平分AA′、CC′C.△ABC與△A′B′C′面積相等 D.直線AB,A′B′的交點不一定在直線MN上第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、在△ABC中,∠A+∠B=∠C,且AB=2BC,∠B=_________.2、已知,點P為內(nèi)一點,點A為OM上一點,點B為ON上一點,當?shù)闹荛L取最小值時,的度數(shù)為_______________.3、如圖,在中,,以為邊,作,滿足,為上一點,連接,,連接.下列結論中正確的是________(填序號)①;②;③若,則;④.4、已知△ABC是等腰三角形.若∠A=40°,則△ABC的頂角度數(shù)是____.5、在平面直角坐標系中,點M(a,b)與點N(3,﹣1)關于x軸對稱,則的值是_____.三、解答題(5小題,每小題10分,共計50分)1、在中,,D為BC延長線上一點,點E為線段AC,CD的垂直平分線的交點,連接EA,EC,ED.(1)如圖1,當時,則_______°;(2)當時,①如圖2,連接AD,判斷的形狀,并證明;②如圖3,直線CF與ED交于點F,滿足.P為直線CF上一動點.當?shù)闹底畲髸r,用等式表示PE,PD與AB之間的數(shù)量關系為_______,并證明.2、已知:如圖,,相交于點O,,.求證:(1);(2).3、如圖,在△ABC中,∠B=75°,AD⊥BC,∠C=∠CAD,求∠C,∠BAC的度數(shù).4、已知點和.試根據(jù)下列條件求出a,b的值.(1)A,B兩點關于y軸對稱;(2)A,B兩點關于x軸對稱;(3)AB∥x軸5、如圖,在中,AB=AC,D是BA延長線上一點,E是AC的中點,連接DE并延長,交BC于點M,∠DAC的平分線交DM于點F.求證:AF=CM.-參考答案-一、單選題1、A【解析】【分析】先根據(jù)方位角的定義分別可求出,再根據(jù)角的和差、平行線的性質可得,,從而可得,然后根據(jù)三角形的內(nèi)角和定理可得,最后根據(jù)等腰直角三角形的定義即可得.【詳解】由方位角的定義得:由題意得:由三角形的內(nèi)角和定理得:是等腰直角三角形即A,B,C三島組成一個等腰直角三角形故選:A.【考點】本題考查了方位角的定義、平行線的性質、三角形的內(nèi)角和定理、等腰直角三角形的定義等知識點,掌握理解方位角的概念是解題關鍵.2、A【解析】【分析】先判斷出AD是BC的垂直平分線,進而求出∠ECB=45°,即可得出結論.【詳解】解:∵等邊三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分線,∵點E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等邊三角形,∴∠ACB=60°,∴∠ACE=∠ACB-∠ECB=15°,故選A.【考點】此題主要考查了等邊三角形的性質,垂直平分線的判定和性質,等腰三角形的性質,求出∠ECB是解本題的關鍵.3、D【解析】【分析】根據(jù)軸對稱圖形的定義判斷即可【詳解】A,B,C都不是軸對稱圖形,故不符合題意;D是軸對稱圖形,故選D.【考點】本題考查了軸對稱圖形的定義,準確理解定義是解題的關鍵.4、C【解析】【分析】由等邊三角形有三條對稱軸可得答案.【詳解】如圖所示,n的最小值為3.故選C.【考點】本題考查了利用軸對稱設計圖案,解題的關鍵是掌握常見圖形的性質和軸對稱圖形的性質.5、D【解析】【分析】據(jù)對稱軸的定義,△ABC與△A′B′C′關于直線MN對稱,P為MN上任意一點,可以判斷出圖中各點或線段之間的關系.【詳解】解:∵△ABC與△A′B′C′關于直線MN對稱,P為MN上任意一點,∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,這兩個三角形的面積相等,故A、B、C選項正確,直線AB,A′B′關于直線MN對稱,因此交點一定在MN上,故D錯誤,故選:D.【考點】本題主要考查了軸對稱性質的理解和應用,準確分析判斷是解題的關鍵.二、填空題1、60°【解析】【分析】利用三角形內(nèi)角和定理求得∠C=90°,在Rt△ACB中,AB=2BC推出∠A=30°,從而得出∠B的度數(shù).【詳解】根據(jù)三角形的內(nèi)角和定理得,∠A+∠B+∠C=180°,∵∠A+∠B=∠C,∴∠C+∠C=180°,解得∠C=90°,在Rt△ACB中,∵AB=2BC,∴∠A=30°,∴∠B=90°-30°=60°.故答案為:60°.【考點】本題考查了三角形內(nèi)角和定理的應用,含30度角的直角三角形的性質,靈活運用含30度角的直角三角形的性質是解題的關鍵.2、80°【解析】【分析】如圖,分別作P關于OM、ON的對稱點,然后連接兩個對稱點即可得到A、B兩點,由此即可得到△PAB的周長取最小值時的情況,并且求出∠APB度數(shù).【詳解】解:如圖,分別作P關于OM、ON的對稱點P1、P2,然后連接兩個對稱點即可得到A、B兩點,∴△PAB即為所求的三角形,根據(jù)對稱性知道:∠APO=∠AP1O,∠BPO=∠BP2O,還根據(jù)對稱性知道:∠P1OP2=2∠MON,OP1=OP2,而∠MON=50°,∴∠P1OP2=100°,∴∠AP1O=∠BP2O=40°,∴∠APB=2×40°=80°.故答案為80°.3、②③④【解析】【分析】通過延長EB至E',使BE=BE',連接,構造出全等三角形,再利用全等三角形的性質依次分析,可得出正確的結論是②③④.【詳解】解:如圖,延長EB至E',使BE=BE',連接;∵∠ABC=90°,∴AB垂直平分EE',∴AE=AE',∴∠1=∠2,∠3=∠5,∵∠1=,∴∠E'AE=2∠1=∠CAD,∴∠E'AC=∠EAD,

又∵AD=AC,∴,∴∠5=∠4,∠ADE=∠ACB(即②正確),∴∠3=∠4;當∠6=∠1時,∠4+∠6=∠3+∠1=90°,此時,∠AME=180°-(∠4+∠6)=90°,當∠6≠∠1時,∠4+∠6≠∠3+∠1,∠4+∠6≠90°,此時,∠AME≠90°,∴①不正確;若CD∥AB,則∠7=∠BAC,∵AD=AC,∴∠7=∠ADC,∵∠CAD+∠7+∠ADC=180°,∴,

∴∠1+∠7=90°,∴∠2+∠7=90°,∴∠2+∠BAC=90°,即∠E'AC=90°,由,∴∠EAD=∠CAE'=90°,E'C=DE,∴AE⊥AD(即③正確),DE=E'B+BE+CE=2BE+CE(即④正確);故答案為:②③④.【考點】本題綜合考查了線段的垂直平分線的判定與性質、全等三角形的判定與性質、等腰三角形的性質、平行線的性質等內(nèi)容;要求學生能夠根據(jù)已知條件通過作輔助線構造出全等三角形以及能正確運用全等三角形的性質得到角或線段之間的關系,能進行不同的邊或角之間的轉換,考查了學生的綜合分析和數(shù)形結合的能力.4、40°或100°【解析】【分析】分∠A為三角形頂角或底角兩種情況討論,即可求解.【詳解】解:當∠A為三角形頂角時,則△ABC的頂角度數(shù)是40°;當∠A為三角形底角時,則△ABC的頂角度數(shù)是180°-40°-40°=100°;故答案為:40°或100°.【考點】本題考查了等腰三角形的性質,此類題目,難點在于要分情況討論.5、1【解析】【分析】根據(jù)關于x軸對稱的兩點的橫坐標相同,縱坐標互為相反數(shù)求得a、b的值即可求得答案.【詳解】解:在直角坐標系中,關于x軸對稱的兩點,橫坐標相同,縱坐標互為相反數(shù),∵點M(a,b)與點N(3,﹣1)關于x軸對稱,∴a=3,b=1,∴=1,故答案為:1.【考點】本題考查了關于x軸對稱的點的坐標特征,熟練掌握關于坐標軸對稱的點的坐標特征是解題的關鍵.三、解答題1、(1)80;(2)是等邊三角形;(3).【解析】【分析】(1)根據(jù)垂直平分線性質可知,再結合等腰三角形性質可得,,利用平角定義和四邊形內(nèi)角和定理可得,由此求解即可;(2)根據(jù)(1)的結論求出即可證明是等邊三角形;(3)根據(jù)利用對稱和三角形兩邊之差小于第三邊,找到當?shù)闹底畲髸r的P點位置,再證明對稱點與AD兩點構成三角形為等邊三角形,利用旋轉全等模型即可證明,從而可知,再根據(jù)30°直角三角形性質可知即可得出結論.【詳解】解:(1)∵點E為線段AC,CD的垂直平分線的交點,∴,∴,,∴,∵,∴,∵,∴,∵在中,,,∴,∴,故答案為:.(2)①結論:是等邊三角形.證明:∵在中,,,∴,由(1)得:,,∴是等邊三角形.②結論:.證明:如解圖1,取D點關于直線AF的對稱點,連接、;∴,∵,等號僅P、E、三點在一條直線上成立,如解圖2,P、E、三點在一條直線上,由(1)得:,又∵,∴,又∵,,∴,∵點D、點是關于直線AF的對稱點,∴,,∴是等邊三角形,∴,,∵是等邊三角形,∴,,∴,∴,在和中,,∴(SAS)∴,∵,∴,在中,,,∴,∴【考點】本題是三角形綜合題,主要考查了等腰三角形、等邊三角形的性質和判定,全等三角形性質和判定等知識點,解題關鍵是利用對稱將轉化為三角形三邊關系找到P的位置,并證明對稱點與AD兩點構成三角形為等邊三角形.2、(1)見詳解;(2)見詳解【解析】【分析】(1)根據(jù)AAS,即可證明;(2)根據(jù)全等三角形的性質得OB=OC,進而即可得到結論.【詳解】證明:(1)在與中,∵,∴(AAS);(2)∵,∴OB=OC,∴.【考點】本題主要考查全等三角形的判定和性質定理以及等腰三角形的性質,掌握AAS判定三角形全等,是解題的關鍵.3、∠C=45°;∠BAC=60°.【解析】【分析】在Rt△ACD中,利用兩銳角互余以及等腰三角形的性質求得∠C=45°,在△ABC中,利用三角形內(nèi)角和定理即可求得∠BAC=60°.【詳解】解:∵AD⊥BC,∴∠ADC=90°,∴在Rt△ACD中,∠CAD+∠C=90°,∵∠C=∠CAD,∴∠C=∠CAD=45°,∵在△ABC中,∠B=75°,∴∠BAC=180°?∠B?∠C=180°?75°?45°=60°.【考點】本題考查了等腰三角形的性質,三角形內(nèi)角和定理,熟記各圖形的性質并準確識圖是解題的關鍵.4、(1),;(2),;(3),【解析】【分析】(1)關于y軸對稱,縱坐標不變,橫坐標變?yōu)橄喾磾?shù),據(jù)此可得a,b的值;(2)關于x軸對稱,橫坐標不變,縱坐標變?yōu)橄喾磾?shù),據(jù)此可得a,b的值;(3)AB∥x軸,即兩點的縱坐標相同,橫坐標不相同,據(jù)此可得a,b的值.【詳解】解:(1)因為A,B兩點關于y軸對稱,所以,則,;(2)因為A,B兩點關于x軸對稱,所以則,;(3)因為x軸則滿足,即,,即.【考點】本題考查了

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論