解析卷北師大版9年級數(shù)學(xué)上冊期中試題附答案詳解【研優(yōu)卷】_第1頁
解析卷北師大版9年級數(shù)學(xué)上冊期中試題附答案詳解【研優(yōu)卷】_第2頁
解析卷北師大版9年級數(shù)學(xué)上冊期中試題附答案詳解【研優(yōu)卷】_第3頁
解析卷北師大版9年級數(shù)學(xué)上冊期中試題附答案詳解【研優(yōu)卷】_第4頁
解析卷北師大版9年級數(shù)學(xué)上冊期中試題附答案詳解【研優(yōu)卷】_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

北師大版9年級數(shù)學(xué)上冊期中試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、如圖,矩形與矩形完全相同,,現(xiàn)將兩個矩形按如圖所示的位置擺放,使點恰好落在上,的長為(

)A.1 B.2 C. D.2、如圖,將圖1中的菱形紙片沿對角線剪成4個直角三角形,拼成如圖2的四邊形(相鄰紙片之間不重疊,無縫隙).若四邊形的面積為13,中間空白處的四邊形的面積為1,直角三角形的兩條直角邊分別為和,則(

)A.12 B.13 C.24 D.253、某校八年級組織一次籃球賽,各班均組隊參賽,賽制為單循環(huán)形式(每兩班之間都賽一場),共需安排15場比賽,則八年級班級的個數(shù)為(

)A.5 B.6 C.7 D.84、為了解某地區(qū)九年級男生的身高情況,隨機(jī)抽取了該地區(qū)1000名九年級男生的身高數(shù)據(jù),統(tǒng)計結(jié)果如下.身高人數(shù)60260550130根據(jù)以上統(tǒng)計結(jié)果,隨機(jī)抽取該地區(qū)一名九年級男生,估計他的身高不低于的概率是(

)A.0.32 B.0.55 C.0.68 D.0.875、如圖,已知菱形ABCD的兩條對角線分別為6和8,M、N分別是邊BC、CD的中點,P是對角線BD上一點,則PM+PN的最小值是()A.5 B.10 C.6 D.86、關(guān)于的一元二次方程的兩根應(yīng)為(

)A. B., C. D.7、如圖,在菱形ABCD中,E是AC的中點,EF∥CB,交AB于點F,如果EF=3,那么菱形ABCD的周長為()A.24 B.18 C.12 D.9二、多選題(3小題,每小題2分,共計6分)1、下列關(guān)于矩形的說法中錯誤的是()A.矩形的對角線互相垂直且平分 B.矩形的對角線相等且互相平分C.對角線相等的四邊形是矩形 D.對角線互相平分的四邊形是矩形2、下列方程中是一元二次方程的有(

)A.B.C.D.E.F.3、下列說法正確的是(

).A.對角線相等的菱形是正方形B.順次連接對角線互相垂直的四邊形的四邊中點,所得到的四邊形是菱形C.成軸對稱的兩個圖形全等D.有三個角相等的四邊形是矩形第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、菱形的一條對角線長為8,其邊長是方程x2-8x+15=0的一個根,則該菱形的面積為________.2、若代數(shù)式有意義,則x的取值范圍是_____.3、如圖,在長方形中,,在上存在一點、沿直線把折疊,使點恰好落在邊上的點處,若,那么的長為________.4、為增強學(xué)生身體素質(zhì),提高學(xué)生足球運動競技水平,我市開展“市長杯”足球比賽,賽制為單循環(huán)形式(每兩隊之間賽一場).現(xiàn)計劃安排21場比賽,應(yīng)邀請多少個球隊參賽?設(shè)邀請x個球隊參賽,根據(jù)題意,可列方程為_____.5、如圖,在矩形中,AD=6,將矩形折疊,使點B與點D重合,落在處,若,則折痕的長為__________.6、一個直角三角形的兩條直角邊相差5cm,面積是7cm2,則其斜邊的長是___.7、如圖,中,對角線AC,BD相交于點O,添加一個條件,能使成為菱形.你添加的條件是__________(不再添加輔助線和字母)8、一元二次方程的解為__________.9、已知菱形的邊長為,兩條對角線的長度的比為3:4,則兩條對角線的長度分別是_____________.10、邊長分別為a和2a的兩個正方形按如圖的樣式擺放,則圖中陰影部分的面積為_____.四、解答題(6小題,每小題10分,共計60分)1、如圖,在矩形ABCD中,點M在DC上,AM=AB,且BN⊥AM,垂足為N.(1)求證:△ABN≌△MAD;(2)若AD=2,AN=4,求四邊形BCMN的面積.2、小軍和小剛兩位同學(xué)在學(xué)習(xí)”概率“時,做投擲骰子(質(zhì)地均勻的正方體)實驗,他們共做了60次試驗,實驗的結(jié)果如下:向上點數(shù)123456出現(xiàn)次數(shù)79682010(1)計算“2點朝上”的頻率和“5點朝上”的頻率.(2)小軍說:“根據(jù)實驗,一次實驗中出現(xiàn)3點朝上的概率是”;小軍的這一說法正確嗎?為什么?(3)小剛說:“如果擲600次,那么出現(xiàn)6點朝上的次數(shù)正好是100次.”小剛的這一說法正確嗎?為什么?3、陜西某景區(qū)吸引了大量中外游客前來參觀,如果游客過多,對進(jìn)景區(qū)的游客健康檢查、擁堵等問題會產(chǎn)生不利影響,但也要保證一定的門票收入,因此景區(qū)采取了漲浮門票價格的方法來控制旅游人數(shù),在該方法實施過程中發(fā)現(xiàn):每周旅游人數(shù)與票價之間存在著如圖所示的一次函數(shù)關(guān)系.在這種情況下,如果要保證每周3000萬元的門票收入,那么每周應(yīng)限定旅游人數(shù)是多少萬人?門票價格應(yīng)是多少元?4、已知關(guān)于x的一元二次方程有兩個實數(shù)根.(1)求k的取值范圍;(2)若,求k的值.5、用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋海?)

(2)6、如圖,在?ABCD中,各內(nèi)角的平分線相交于點E,F(xiàn),G,H.(1)求證:四邊形EFGH是矩形;(2)若AB=6,BC=4,∠DAB=60°,求四邊形EFGH的面積.-參考答案-一、單選題1、D【解析】【分析】由勾股定理求出,進(jìn)而可得結(jié)論.【詳解】解:∵∴,又∵矩形與矩形完全相同,∴∴,∴故選:D.【考點】此題主要考查了矩形的性質(zhì)以及勾股定理的應(yīng)用,運用勾股定理求出是解答此題的關(guān)鍵.2、D【解析】【分析】根據(jù)菱形的性質(zhì)可得對角線互相垂直平分,進(jìn)而可得4個直角三角形全等,結(jié)合已知條件和勾股定理求得,進(jìn)而根據(jù)面積差以及三角形面積公式求得,最后根據(jù)完全平方公式即可求得.【詳解】菱形的對角線互相垂直平分,個直角三角形全等;,,,四邊形是正方形,又正方形的面積為13,正方形的邊長為,根據(jù)勾股定理,則,中間空白處的四邊形的面積為1,個直角三角形的面積為,,,,.故選D.【考點】本題考查了正方形的性質(zhì)與判定,菱形的性質(zhì),勾股定理,完全平方公式,求得是解題的關(guān)鍵.3、B【解析】【分析】設(shè)有x個班級參加比賽,根據(jù)題目中的比賽規(guī)則,可得一共進(jìn)行了場比賽,即可列出方程,求解即可.【詳解】解:設(shè)有x個班級參加比賽,,,解得:(舍),則共有6個班級參加比賽,故選:B.【考點】本題考查了一元二次方程的應(yīng)用,解題關(guān)鍵是讀懂題意,得到比賽總數(shù)的等量關(guān)系.4、C【解析】【分析】先計算出樣本中身高不低于170cm的頻率,然后根據(jù)利用頻率估計概率求解.【詳解】解:樣本中身高不低于170cm的頻率,所以估計抽查該地區(qū)一名九年級男生的身高不低于170cm的概率是0.68.故選:C.【考點】本題考查了利用頻率估計概率:大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.5、A【解析】【分析】作M關(guān)于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,求出CP、BP,根據(jù)勾股定理求出BC長,證出MP+NP=QN=BC,即可得出答案.【詳解】解:作M關(guān)于BD的對稱點Q,連接NQ,交BD于P,連接MP,此時MP+NP的值最小,連接AC,則P是AC中點,∵四邊形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵M(jìn)Q⊥BD,∴AC∥MQ,∵M(jìn)為BC中點,∴Q為AB中點,∵N為CD中點,四邊形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四邊形BQNC是平行四邊形,∴PQ∥AD,而點Q是AB的中點,故PQ是△ABD的中位線,即點P是BD的中點,同理可得,PM是△ABC的中位線,故點P是AC的中點,即點P是菱形ABCD對角線的交點,∵四邊形ABCD是菱形,則△BPC為直角三角形,,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,故選:A.【考點】本題考查了軸對稱-最短路線問題,平行四邊形的性質(zhì)和判定,菱形的性質(zhì),勾股定理的應(yīng)用,解此題的關(guān)鍵是能根據(jù)軸對稱找出P的位置.6、B【解析】【分析】先把方程化為一般式,再計算判別式的值,然后利用求根公式解方程即可.【詳解】x2?3ax+a2=0,△=(?3a)2?4××a2=a2,x=.所以x1=a,x2=a.故答案選B.【考點】本題考查了解一元二次方程,解題的關(guān)鍵是根據(jù)公式法解一元二次方程.7、A【解析】【分析】易得BC長為EF長的2倍,那么菱形ABCD的周長=4BC問題得解.【詳解】∵E是AC中點,∵EF∥BC,交AB于點F,∴EF是△ABC的中位線,∴BC=2EF=2×3=6,∴菱形ABCD的周長是4×6=24,故選A.【考點】本題考查了三角形中位線的性質(zhì)及菱形的周長公式,熟練掌握相關(guān)知識是解題的關(guān)鍵.二、多選題1、ACD【解析】【分析】根據(jù)矩形的性質(zhì)得到:矩形的對角線相等且互相平分,根據(jù)矩形的判定:對角線相等且互相平分且相等的四邊形是矩形,進(jìn)行逐一判斷即可.【詳解】A.矩形的對角線互相平分,且相等,但不一定互相垂直,說法錯誤,本選項符合題意;B.矩形的對角線相等且互相平分,說法正確,本選項不符合題意;C.對角線相等的四邊形不一定為矩形,例如等腰梯形對角線相等,但不是矩形,說法錯誤,本選項符合題意;D.對角線互相平分的四邊形為平行四邊形,不一定為矩形,說法錯誤,本選項符合題意;故選ACD.【考點】考查矩形的判定與性質(zhì),熟練掌握矩形的判定定理與性質(zhì)定理是解決問題的關(guān)鍵.2、BCD【解析】【分析】根據(jù)一元二次方程的定義對6個選項逐一進(jìn)行分析.【詳解】A中最高次數(shù)是3不是2,故本選項錯誤;B符合一元二次方程的定義,故本選項正確;C原式可化為4x2—=0,符合一元二次方程的定義,故本選項正確;D原式可化為2x2十x-1=0,符合一元二次方程的定義,故本選項正確;E原式可化為2x+1=0,不符合一元二次方程的定義,故本選項錯誤;Fax2+bx+c=0,只有在滿足a≠0的條件下才是一元二次方程,故本選項錯誤.故答案為:BCD【考點】本題考查了一元二次方程的概念,只有一個未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0)特別要注意a≠0的條件,這是在做題過程中容易忽視的知識點.3、AC【解析】【分析】根據(jù)正方形,矩形的判定,成軸對稱圖形的關(guān)系,對各選項進(jìn)行判斷即可;【詳解】解:對角線相等的菱形是正方形,正確,符合題意;B順次連接對角線互相垂直的四邊形的四邊中點,所得到的四邊形是矩形,故原命題錯誤,不符合題意;C成軸對稱的兩個圖形全等,正確,符合題意;D有四個角相等的四邊形是矩形,錯誤,不符合題意.故答案為:A、C.【考點】本題考查了正方形,矩形的判定,成軸對稱圖形的關(guān)系.解題的關(guān)鍵在于對知識的靈活運用.三、填空題1、24【解析】【分析】利用因式分解法解方程得到x1=3,x2=5,再根據(jù)菱形的性質(zhì)得到菱形的邊長為5,利用勾股定理計算出菱形的另一條對角線長,然后根據(jù)菱形的面積公式計算.【詳解】解:x2-8x+15=0,(x-3)(x-5)=0,x-3=0或x-5=0,∴x1=3,x2=5,∵菱形一條對角線長為8,∴菱形的邊長為5,∵菱形的另一條對角線長=2×=6,∴菱形的面積=×6×8=24.故答案為:24.【考點】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.也考查了菱形的性質(zhì).2、﹣3≤x≤且x≠.【解析】【分析】根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0;分母中有字母,分母不為0.【詳解】解:若代數(shù)式有意義,必有,解①得解②移項得兩邊平方得整理得解得③∴解集為﹣3≤x≤且x≠.故答案為:﹣3≤x≤且x≠.【考點】本題考查了二次根式的概念:式子(a≥0)叫二次根式,(a≥0)是一個非負(fù)數(shù).注意:二次根式中的被開方數(shù)必須是非負(fù)數(shù),否則二次根式無意義;當(dāng)二次根式在分母上時還要考慮分母不等于零,此時被開方數(shù)大于0.3、【解析】【分析】由折疊的性質(zhì),得DE=EF,AD=AF,然后求出AF=AD=10,則求出FC的長度,再根據(jù)勾股定理建立方程,即可求出答案.【詳解】解:∵四邊形是長方形,由折疊的性質(zhì),,∵,又,在中,;故答案為:.【考點】本題考查了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等;②矩形的性質(zhì),勾股定理求解.4、x(x﹣1)=21【解析】【分析】賽制為單循環(huán)形式(每兩隊之間都賽一場),x個球隊比賽總場數(shù)為x(x﹣1),即可列方程.【詳解】有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:x(x﹣1)=21,故答案為x(x﹣1)=21.【考點】本題考查了一元二次方程的應(yīng)用,弄清題意,找準(zhǔn)等量關(guān)系列出方程是解題的關(guān)鍵.5、4【解析】【分析】由,,可求,,由折疊可知,得出,為的直角三角形;由可知,,,由折疊的性質(zhì)得,等量代換后判斷為等邊三角形,即可得出答案.【詳解】解:在中,∵∴,,∵,∴,由折疊的性質(zhì)得,∴,∴為等邊三角形,由折疊可知:BE=DE,∵,∴,∵AD=6,∴DE=BE=4,故.故答案為:4.【考點】本題考查圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.6、cm【解析】【分析】設(shè)較短的直角邊長是xcm,較長的就是(x+5)cm,根據(jù)面積是7cm,求出直角邊長,根據(jù)勾股定理求出斜邊長.【詳解】解:設(shè)這個直角三角形的較短直角邊長為xcm,則較長直角邊長為(x+5)cm,根據(jù)題意,得,所以,解得,,因為直角三角形的邊長為正數(shù),所以不符合題意,舍去,所以x=2,當(dāng)x=2時,x+5=7,由勾股定理,得直角三角形的斜邊長為==cm.故答案為:cm.【考點】本題考查了勾股定理,一元二次方程的應(yīng)用,關(guān)鍵是知道三角形面積公式以及直角三角形中勾股定理的應(yīng)用.7、或或或或【解析】【分析】題中實在平行四邊形基礎(chǔ)上進(jìn)行菱形的判定,從邊、角、對角線三個方面思考:①鄰邊相等的平行四邊形是菱形;②角上面沒有;③對角線互相垂直的平行四邊形是菱形;相應(yīng)添加條件即可.【詳解】在基礎(chǔ)上,從邊上添加有四種:①;②;③;④;從對角線上添加有:,故答案為:或或或或.【考點】本題考查菱形的判定,熟練掌握平行四邊形及特殊平行四邊形的性質(zhì),并清楚是在誰的基礎(chǔ)上進(jìn)行判定是解決問題的關(guān)鍵.8、x=或x=2【解析】【分析】根據(jù)一元二次方程的解法解出答案即可.【詳解】當(dāng)x-2=0時,x=2,當(dāng)x-2≠0時,4x=1,x=,故答案為:x=或x=2.【考點】本題考查解一元二次方程,本題關(guān)鍵在于分情況討論.9、,【解析】【分析】如圖BD:AC=3:4,AB=10cm,設(shè)BD=3x,則AC=4x,根據(jù)菱形的性質(zhì),DO=BO=,AO=CO=2x,在RtΔAOD中,AD2+DO2+AO2,,求出x,BD=3x,AC=4x即可.【詳解】如圖BD:AC=3:4,AB=10cm,設(shè)BD=3x,則AC=4x,根據(jù)菱形的性質(zhì),DO=BO=,AO=CO=2x,AC垂直BD在RtΔAOD中,AD2+DO2+AO2,,x=4,AC=4×4=16,BD=3×4=12,則兩條對角線的長度分別是12cm,16cm.故答案為:12cm,16cm.【考點】本題考查菱形的對角線問題,掌握菱形的性質(zhì),利用對角線之間的關(guān)系,和勾股定理構(gòu)造方程是解題關(guān)鍵.10、2a2【解析】【分析】結(jié)合圖形,發(fā)現(xiàn):陰影部分的面積=大正方形的面積的+小正方形的面積﹣直角三角形的面積.【詳解】解:陰影部分的面積=大正方形的面積+小正方形的面積﹣直角三角形的面積=(2a)2+a2﹣?2a?3a=4a2+a2﹣3a2=2a2.故答案為:2a2.【考點】本題考查正方形中不規(guī)則圖形面積的求法,解題的關(guān)鍵是利用正方形的性質(zhì),通過規(guī)則圖形進(jìn)行求解.四、解答題1、(1)見解析(2)S四邊形BCMN=4-8【解析】【分析】(1)利用矩形的對邊平行和四個角都是直角的性質(zhì)得到兩對相等的角,利用AAS證得兩三角形全等即可;(2)利用全等三角形的性質(zhì)求得AD=BN=2,AN=4,從而利用勾股定理求得AB的長,利用S四邊形BCMN=S矩形ABCD-S△ABN-S△MAD求得答案即可.(1)證明:在矩形ABCD中,∠D=90°,DC∥AB,∴∠BAN=∠AMD.∵BN⊥AM,∴∠BNA=90°,在△ABN與△MAD中,,∴△ABN≌△MAD(AAS).(2)解:∵△ABN≌△MAD,∴BN=AD.∵AD=2,∴BN=2.又∵AN=4,∴在Rt△ABN中,由勾股定理,得AB=2.∴S矩形ABCD=2×2=4.又∵S△ABN=S△MAD=×2×4=4.∴S四邊形BCMN=S矩形ABCD-S△ABN-S△MAD=4-8.【考點】本題考查了矩形的性質(zhì)及全等三角形的判定,了解矩形的對邊平行且相等,四個角都是直角,對角線相等且互相平分是解答本題的關(guān)鍵,難度不大.2、解:(1)2點朝上出現(xiàn)的頻率為;5點朝上的概率為;(2)小軍的說法不正確,(3)小剛的說法是不正確的.

【解析】【分析】(1)直接利用概率公式計算即可;(2)利用大量重復(fù)試驗下事件發(fā)生的頻率可以估計該事件發(fā)生的概率直接回答即可;(3)利用隨機(jī)事件發(fā)生的概率的意義直接回答即可確定答案.【詳解】(1)2點朝上出現(xiàn)的頻率==;5點朝上的概率==;(2)小軍的說法不正確,因為3點朝上的概率為,不能說明3點朝上這一事件發(fā)生的概率就是?,只有當(dāng)實驗的次數(shù)足夠多時,該事件發(fā)生的頻率才穩(wěn)定在事件發(fā)生的概率附近,才可以將這個頻率的穩(wěn)定值作為該事件發(fā)生的概率.(3)小剛的說法是不正確的,因為不確定事件發(fā)生具有隨機(jī)性,所以6點朝上出現(xiàn)的次數(shù)不一定是100次.【考點】本題考查了利用頻率估計概率的知識,解題的關(guān)鍵是了解“大量重復(fù)試驗下事件發(fā)生的頻率可以估計該事件發(fā)生的概率”,難度一般.3、10萬人、300元【解析】【分析】設(shè)門票價格為x元,每周旅游人數(shù)為y萬人,根據(jù)題中的圖中信息,利用待定系數(shù)法即可求解出每周旅游人數(shù)y與票價x之間存在一次函數(shù)關(guān)系,再根據(jù)題意列出一元二次方程即可求解.【詳解】解:設(shè)門票價格為x元,每周旅游人數(shù)為y萬人,∵每周旅游人數(shù)與票價之間存在一次函數(shù)關(guān)系,∴設(shè)一次函數(shù)為y=kx+b,則有,解得:,∴.由題意得:,解得=100,=300.當(dāng)x=100時,y=30;當(dāng)x=300時,y=10.∵既要控制人數(shù)又要保證收入,∴每周應(yīng)限定旅游人數(shù)是10萬人,門票價格應(yīng)是300元.【考點】本題主要考查一次函數(shù)與一元二次方程的實際應(yīng)用,根據(jù)等量關(guān)系,列出一次函數(shù)解析式和方程,是解題的關(guān)鍵.4、(1);(2)【解析】【分析】(1)根據(jù)建立不等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論