版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《全等三角形》章節(jié)測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、下列說法正確的是(
)A.形狀相同的兩個三角形全等 B.面積相等的兩個三角形全等C.完全重合的兩個三角形全等 D.所有的等邊三角形全等2、如圖,△ABC是邊長為4的等邊三角形,點P在AB上,過點P作PE⊥AC,垂足為E,延長BC至點Q,使CQ=PA,連接PQ交AC于點D,則DE的長為()A.1 B.1.8 C.2 D.2.53、有一個小口瓶(如圖所示),想知道它的內(nèi)徑是多少,但是尺子不能伸到里邊直接測,于是拿兩根長度相同的細(xì)木條,把兩根細(xì)木條的中點固定在一起,木條可以繞中點轉(zhuǎn)動,這樣只要量出AB的長,就可以知道玻璃瓶的內(nèi)徑是多少,那么△OAB≌△OCD理由是(
)A.邊角邊 B.角邊角 C.邊邊邊 D.角角邊4、如圖,在和中,,則下列結(jié)論中錯誤的是(
)A. B. C. D.E為BC中點5、如圖,在中,,,,平分交于D點,E,F(xiàn)分別是,上的動點,則的最小值為(
)A. B. C.3 D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖是教科書中的一個片段,由畫圖我們可以得到△,判定這兩個三角形全等的依據(jù)是__.(1)畫;(2)分別以點,為圓心,線段,長為半徑畫弧,兩弧相交于點;(3)連接線段,.2、如圖,在中,,以點為圓心,任意長為半徑作弧,分別交于和,再分別以點為圓心,大于二分之一為半徑作弧,兩弧交于點,連接并延長交于點,過點作于.若,則的面積為________.3、如圖是由4個相同的小正方形組成的網(wǎng)格圖,其中∠1+∠2=______.
4、如圖,四邊形ABCD≌四邊形A′B′C′D′,則∠A的大小是______.5、已知∠AOB=60°,OC是∠AOB的平分線,點D為OC上一點,過D作直線DE⊥OA,垂足為點E,且直線DE交OB于點F,如圖所示.若DE=2,則DF=_____.三、解答題(5小題,每小題10分,共計50分)1、如圖,D是△ABC的邊AC上一點,點E在AC的延長線上,ED=AC,過點E作EF∥AB,并截取EF=AB,連接DF.求證:DF=CB.2、如圖,已知在ΔABC中AB=AC,∠BAC=90°,分別過B,C兩點向過A的直線作垂線,垂足分別為E,F(xiàn).求證:EF=BE+CE.3、如圖AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.(1)求證AD=AE;(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.4、如圖,若△OAD≌△OBC,且∠O=65°,∠BEA=135°,求∠C的度數(shù).5、如圖,點B、C、D在同一直線上,△ABC、△ADE是等邊三角形,CE=5,CD=2(1)證明:△ABD≌△ACE;(2)求∠ECD的度數(shù);(3)求AC的長.-參考答案-一、單選題1、C【解析】【分析】根據(jù)全等形的概念:能夠完全重合的兩個圖形叫做全等形,以及全等三角形的判定定理可得答案.【詳解】解:A、形狀相同的兩個三角形全等,說法錯誤,應(yīng)該是形狀相同且大小也相同的兩個三角形全等;B、面積相等的兩個三角形全等,說法錯誤;C、完全重合的兩個三角形全等,說法正確;D、所有的等邊三角形全等,說法錯誤;故選:C.【考點】此題主要考查了全等圖形,關(guān)鍵是掌握全等形的概念.2、C【解析】【分析】過作的平行線交于,通過證明≌,得,再由是等邊三角形,即可得出.【詳解】解:過作的平行線交于,,是等邊三角形,,,是等邊三角形,,∵CQ=PA,∴在中和中,,≌,,于,是等邊三角形,,,,,,故選:C.【考點】本題主要考查了等邊三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),作輔助線構(gòu)造全等三角形是解題的關(guān)鍵.3、A【解析】【詳解】解:∵根據(jù)SAS得:△OAB≌△ODC.故選A.4、D【解析】【分析】首先證明,推出,,由,推出,推出,即可一一判斷.【詳解】解:∵,∴和為直角三角形,在和中,,∴,∴,,,∵,∴,∴,故A、B、C正確,故選:D.【考點】本題主要考查全等三角形的判定和性質(zhì),解題的關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì).5、D【解析】【分析】利用角平分線構(gòu)造全等,使兩線段可以合二為一,則EC+EF的最小值即為點C到AB的垂線段長度.【詳解】在AB上取一點G,使AG=AF.∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4∴AB=5,∵∠CAD=∠BAD,AE=AE,∴△AEF≌△AEG(SAS)∴FE=GE,∴要求CE+EF的最小值即為求CE+EG的最小值,故當(dāng)C、E、G三點共線時,符合要求,此時,作CH⊥AB于H點,則CH的長即為CE+EG的最小值,此時,,∴CH==,即:CE+EF的最小值為,故選:D.【考點】本題考查了角平分線構(gòu)造全等以及線段和差極值問題,靈活構(gòu)造輔助線是解題關(guān)鍵.二、填空題1、【解析】【分析】根據(jù)全等三角形的判定方法解決問題即可.【詳解】解:在和△中,,,故答案為:.【考點】本題考查了作圖?復(fù)雜作圖,全等三角形的判定等知識,解題的關(guān)鍵是理解題意,靈活應(yīng)用所學(xué)知識解決問題.2、5【解析】【分析】作GM⊥AB于M,先利用基本作圖得到AG平分∠BAC,再根據(jù)角平分線的性質(zhì)得到GM=GH=2,然后根據(jù)三角形面積公式計算.【詳解】解:作GM⊥AB于M,由作法得AG平分∠BAC,而GH⊥AC,GM⊥AB,∴GM=GH=2,∴,故答案為:5.【考點】此題考查了角平分線的性質(zhì)定理:角平分線上的點到這個角的兩邊的距離相等,還考查了角平分線的作圖方法,正確理解題意得到AG平分∠BAC是解題的關(guān)鍵.3、180°或180度【解析】【分析】由全等三角形性質(zhì)和鄰補角定義可求得.【詳解】解:如圖:根據(jù)題意得∶BC=DE,∠E=∠B=90°,AB=AE,所以△ABC≌△AED,所以∠1=∠ACB.又因為∠2+∠ACB=180°,所以,∠2+∠1=180°.故答案為:180°【考點】本題考核知識點∶全等三角形性質(zhì)和鄰補角定義.4、95°【解析】【分析】根據(jù)兩個多邊形全等,則對應(yīng)角相等四邊形以及內(nèi)角和即可完成【詳解】∵四邊形ABCD≌四邊形A′B′C′D′∴∠D=∠D′=130゜∵四邊形ABCD的內(nèi)角和為360゜∴∠A=360゜-∠B-∠C-∠D=95゜故答案為:95゜【考點】本題考查了多邊形全等的性質(zhì)、多邊形的內(nèi)角和定理,掌握多邊形全等的性質(zhì)是關(guān)鍵.5、4.【解析】【分析】過點D作DM⊥OB,垂足為M,則DM=DE=2,在Rt△OEF中,利用三角形內(nèi)角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所對的直角邊等于斜邊的一半可求出DF的長,此題得解.【詳解】過點D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案為4.【考點】本題考查了角平分線的性質(zhì)、三角形內(nèi)角和定理以及含30度角的直角三角形,利用角平分線的性質(zhì)及30°角所對的直角邊等于斜邊的一半,求出DF的長是解題的關(guān)鍵.三、解答題1、證明過程見解析【解析】【分析】根據(jù)EF∥AB,得到,再根據(jù)已知條件證明,即可得解;【詳解】∵EF∥AB,∴,在和中,,∴,∴;【考點】本題主要考查了全等三角形的判定與性質(zhì),準(zhǔn)確分析判斷是解題的關(guān)鍵.2、見解析【解析】【分析】證明△BEA≌△AFC,然后利用對應(yīng)邊相等就可以證明題目的結(jié)論.【詳解】證明:∵BE⊥EA,CF⊥AF,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,∴∠CAF=∠EBA,在△BEA和△AFC中,∴△BEA≌△AFC().∴EA=FC,BE=AF.∴EF=BE+CF.【考點】此題主要考查了全等三角形的性質(zhì)與判定,利用它們解決問題,經(jīng)常用全等來證線段和的問題.3、(1)證明見解析;(2)互相垂直,證明見解析【解析】【分析】(1)根據(jù)AAS推出△ACD≌△ABE,根據(jù)全等三角形的性質(zhì)得出即可;(2)證Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根據(jù)等腰三角形的性質(zhì)推出即可.【詳解】(1)證明:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°,△ACD和△ABE中,∵∴△ACD≌△ABE(AAS),∴AD=AE.(2)猜想:OA⊥BC.證明:連接OA、BC,∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°.在Rt△ADO和Rt△AEO中,∵∴Rt△ADO≌Rt△AEO(HL).∴∠DAO=∠EAO,又∵AB=AC,∴OA⊥BC.4、35o【解析】【分析】根據(jù)全等三角形對應(yīng)角相等可得∠C=∠D,∠OBC=∠OAD,再根據(jù)三角形的內(nèi)角和等于180°表示出∠OBC,然后利用四邊形的內(nèi)角和等于360°列方程求解即可.【詳解】∴∠C=∠D,∠OBC=∠OAD,∵∠O=65o,∴∠OBC=180o?65o?∠C=115o?∠C,在四邊形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360o,∴65o+115o?∠C+135o+115o?∠C=360o,解得∠C=35o.【考點】此題考查了全等三角形的性質(zhì)和四邊形的內(nèi)角和等于360°,熟練掌握這兩個性質(zhì)是解題的關(guān)鍵.5、(1)見解析(2)60°(3)3【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì)利用SAS證明;(2)利用全等三角形的性質(zhì)得到∠B=∠ACE=60°,計算即可得到答案;(3)利用全等的性質(zhì)得到BD的長,再由等邊三角形的性質(zhì),即可得到AC的長.(1)證明:∵△ABC和△ADE是等邊三角形,∴AD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年浙江工貿(mào)職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫及答案1套
- 2026年浙江同濟科技職業(yè)學(xué)院單招綜合素質(zhì)考試模擬測試卷附答案
- 2026年廣東交通職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫附答案
- 2026年安徽藝術(shù)職業(yè)學(xué)院單招職業(yè)技能測試題庫及答案1套
- 2026年美女教師心理考試題庫及參考答案1套
- 2026年承德應(yīng)用技術(shù)職業(yè)學(xué)院單招職業(yè)適應(yīng)性考試題庫及答案1套
- 2026年山西體育職業(yè)學(xué)院單招職業(yè)適應(yīng)性測試模擬測試卷及答案1套
- 2026年新團員入團考試試題附參考答案(考試直接用)
- 2026年張家口職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試模擬測試卷及答案1套
- 2025廣東茂名高州市殘疾人康復(fù)中心選聘工作人員8人考試模擬卷附答案
- 清華大學(xué)教師教學(xué)檔案袋制度
- 公租房完整租賃合同范本
- 東南大學(xué)附屬中大醫(yī)院2026年招聘備考題庫及答案詳解參考
- 2025新疆阿瓦提縣招聘警務(wù)輔助人員120人參考筆試題庫及答案解析
- 貴州國企招聘:2025貴州鹽業(yè)(集團)有限責(zé)任公司貴陽分公司招聘考試題庫附答案
- 2025-2026學(xué)年秋季學(xué)期教學(xué)副校長工作述職報告
- GB/T 3098.5-2025緊固件機械性能第5部分:自攻螺釘
- 2026年服裝電商直播轉(zhuǎn)化技巧
- 2025-2026學(xué)年小學(xué)美術(shù)浙美版(2024)二年級上冊期末練習(xí)卷及答案
- 會所軟裝合同范本
- 沖刺2026中考-科學(xué)備考班會課件
評論
0/150
提交評論