版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)上冊《全等三角形》專項(xiàng)訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在△ABC中,∠C=90°,點(diǎn)D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數(shù)為()A.15° B.55° C.65° D.75°2、下列命題的逆命題一定成立的是(
)①對頂角相等;②同位角相等,兩直線平行;③全等三角形的周長相等;④能夠完全重合的兩個(gè)三角形全等.A.①②③ B.①④ C.②④ D.②3、如圖,在△ABC中,AC=5,AB=7,AD平分∠BAC,DE⊥AC,DE=2,則△ABC的面積為()A.14 B.12 C.10 D.74、已知,如圖,在△ABC中,D為BC邊上的一點(diǎn),延長AD到點(diǎn)E,連接BE、CE,∠ABD+∠3=90°,∠1=∠2=∠3,下列結(jié)論:①△ABD為等腰三角形;②AE=AC;③BE=CE=CD;④CB平分∠ACE.其中正確的結(jié)論個(gè)數(shù)有(
)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)5、如圖,△ABC的三邊AB,BC,CA長分別是20,30,40,其三條角平分線將△ABC分為三個(gè)三角形,則S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖是由4個(gè)相同的小正方形組成的網(wǎng)格圖,其中∠1+∠2=______.
2、如圖,在四邊形中,,,,的延長線與、相鄰的兩個(gè)角的平分線交于點(diǎn)E,若,則的度數(shù)為___________.3、如圖,△ABC中,BD平分∠ABC,AD⊥BD,△BCD的面積為10,△ACD的面積為6,則△ABD的面積是_________.4、如圖,,若,則到的距離為_________.5、如圖,點(diǎn)B,F(xiàn),C,E在一條直線上,,,請?zhí)砑右粋€(gè)條件,使≌,這個(gè)添加的條件可以是______(只需寫一個(gè),不添加輔助線).三、解答題(5小題,每小題10分,共計(jì)50分)1、已知:如圖,在△ABC中,AB=AC,在△ADE中,AD=AE,且∠BAC=∠DAE,連接BD,CE交于點(diǎn)F,連接AF.(1)求證:△ABD≌△ACE;(2)求證:FA平分∠BFE.2、(1)閱讀理解:問題:如圖1,在四邊形中,對角線平分,.求證:.思考:“角平分線+對角互補(bǔ)”可以通過“截長、補(bǔ)短”等構(gòu)造全等去解決問題.方法1:在上截取,連接,得到全等三角形,進(jìn)而解決問題;方法2:延長到點(diǎn),使得,連接,得到全等三角形,進(jìn)而解決問題.結(jié)合圖1,在方法1和方法2中任選一種,添加輔助線并完成證明.(2)問題解決:如圖2,在(1)的條件下,連接,當(dāng)時(shí),探究線段,,之間的數(shù)量關(guān)系,并說明理由;(3)問題拓展:如圖3,在四邊形中,,,過點(diǎn)D作,垂足為點(diǎn)E,請直接寫出線段、、之間的數(shù)量關(guān)系.3、如圖,點(diǎn)C、F在線段BE上,∠ABC=∠DEF=90°,BC=EF,請只添加一個(gè)合適的條件使△ABC≌△DEF.(1)根據(jù)“ASA”,需添加的條件是;根據(jù)“HL”,需添加的條件是;(2)請從(1)中選擇一種,加以證明.4、中,,,過點(diǎn)作,連接,,為平面內(nèi)一動(dòng)點(diǎn).(1)如圖1,點(diǎn)在上,連接,,過點(diǎn)作于點(diǎn),為中點(diǎn),連接并延長,交于點(diǎn).①若,,則;②求證:.(2)如圖2,連接,,過點(diǎn)作于點(diǎn),且滿足,連接,,過點(diǎn)作于點(diǎn),若,,,請求出線段的取值范圍.5、在中,BE,CD為的角平分線,BE,CD交于點(diǎn)F.(1)求證:;(2)已知.①如圖1,若,,求CE的長;②如圖2,若,求的大?。?參考答案-一、單選題1、D【解析】【分析】根據(jù)鄰補(bǔ)角定義可得∠ADE=15°,由平行線的性質(zhì)可得∠A=∠ADE=15°,再根據(jù)三角形內(nèi)角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【考點(diǎn)】本題考查了平行線的性質(zhì)、三角形內(nèi)角和定理等,熟練掌握平行線的性質(zhì)以及三角形內(nèi)角和定理是解題的關(guān)鍵.2、C【解析】【分析】求出各命題的逆命題,然后判斷真假即可.【詳解】解:①對頂角相等,逆命題為:相等的角為對頂角,是假命題不符合題意;②同位角相等,兩直線平行,逆命題為:兩直線平行,同位角相等,是真命題,符合題意;③全等三角形的周長相等.逆命題為:周長相等的兩個(gè)三角形全等,是假命題,不符合題意;④能夠完全重合的兩個(gè)三角形全等.逆命題為:兩個(gè)全等三角形能夠完全重合,是真命題,符合題意;故逆命題成立的是②④,故選C.【考點(diǎn)】本題主要考查命題與定理,熟悉掌握逆命題的求法是解本題的關(guān)鍵.3、B【解析】【分析】過點(diǎn)D作DF⊥AB于點(diǎn)F,利用角平分線的性質(zhì)得出,將的面積表示為面積之和,分別以AB為底,DF為高,AC為底,DE為高,計(jì)算面積即可求得.【詳解】過點(diǎn)D作DF⊥AB于點(diǎn)F,∵AD平分∠BAC,DE⊥AC,DF⊥AB,∴,∴,故選:B.【考點(diǎn)】本題考查角平分線的性質(zhì),角平分線上的點(diǎn)到角兩邊的距離相等,熟記性質(zhì)作出輔助線是解題關(guān)鍵.4、C【解析】【分析】作AF平分∠BAD.可根據(jù)證△ABF≌△ADF,推出AB=AD,得出△ABD為等腰三角形;可根據(jù)同弦所對的圓周角相等知點(diǎn)A、B、C、E共圓,可判出BE=CE=CD,根據(jù)三角形內(nèi)角和等于180°,可判出AE=AC;求出∠7=90°﹣∠2,根據(jù)∠1=∠4=∠2推出∠4≠∠7,即可得出BC不是∠ACE的平分線.【詳解】解:作AF平分∠BAD,∵∠BAD=∠3,∠ABD+∠3=90°,∴∠BAF=∠3=∠DAF,∴∠ABF+∠BAF=90°∴∠AFB=∠AFD=90°,在△BAF和△DAF中∴△ABF≌△ADF(ASA),∴AB=AD,故①正確;∵AE=AC,∴∠6=∠4+∠7==90°?,∵∠5=∠ADB=∠ABD==90°?,∠1=∠2,∴∠5=∠6=90°?∴CE=CD,∠4=180°?∠5?∠6=180°?2(90°?)=∠1,∵∠1=∠3,∴∠4=∠3,∴BE=CE,∴BE=CE=CD,∴③正確;∵∠6+∠2+∠ACE=180°,∠6=∠5=∠ADB=∠ABD=90°﹣∠2.∴∠ACE=180°﹣∠6﹣∠2=90°﹣∠2,∴∠ACE=∠6,∴AE=CE,故②正確∵∠5=∠2+∠7=90°﹣∠2,∴∠7=90°﹣∠2,∵∠BAD=∠4=∠2,∴∠4≠∠7,故④錯(cuò)誤;故選C.【考點(diǎn)】本題主要考查了全等三角形的判定和性質(zhì)、同弦所對的圓周角相等、三角形內(nèi)角和的相關(guān)知識(shí),靈活運(yùn)用所學(xué)知識(shí)是解題的關(guān)鍵.5、C【解析】【分析】過點(diǎn)作于點(diǎn),作于點(diǎn),作于點(diǎn),先根據(jù)角平分線的性質(zhì)可得,再根據(jù)三角形的面積公式即可得.【詳解】解:如圖,過點(diǎn)作于點(diǎn),作于點(diǎn),作于點(diǎn),是的三條角平分線,,,故選:C.【考點(diǎn)】本題考查了角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)是解題關(guān)鍵.二、填空題1、180°或180度【解析】【分析】由全等三角形性質(zhì)和鄰補(bǔ)角定義可求得.【詳解】解:如圖:根據(jù)題意得∶BC=DE,∠E=∠B=90°,AB=AE,所以△ABC≌△AED,所以∠1=∠ACB.又因?yàn)椤?+∠ACB=180°,所以,∠2+∠1=180°.故答案為:180°【考點(diǎn)】本題考核知識(shí)點(diǎn)∶全等三角形性質(zhì)和鄰補(bǔ)角定義.2、【解析】【分析】先證明Rt△CDA≌Rt△CBA得到,再由角平分線的定義求出∠EDC=45°,最后根據(jù)三角形內(nèi)角和定理求解即可.【詳解】解:∵,,∴∠CDA=∠CBA=90°,在Rt△CDA和Rt△CBA中,,∴Rt△CDA≌Rt△CBA(HL),∴,∵DE平分與∠ADC相鄰的角,∠ADC=90°,∴∠EDC=45°,∴∠CED=180°-∠DAE-∠ADC-∠EDC=15°,故答案為:15°.【考點(diǎn)】本題主要考查了全等三角形的性質(zhì)與判定,三角形內(nèi)角和定理,角平分線的定義,熟知全等三角形的性質(zhì)與判定條件是解題的關(guān)鍵.3、16【解析】【分析】延長交于,由證明,得出,得出,進(jìn)而得出,即可得出結(jié)果.【詳解】如圖所示,延長、交于,∵平分,,∴,,在和中,,∴,∴,∴,,∴.故答案為:16.【考點(diǎn)】此題考查全等三角形的判定與性質(zhì),三角形面積的計(jì)算,證明三角形全等得出是解題關(guān)鍵.4、4【解析】【分析】過P點(diǎn)作PE⊥OB于E,根據(jù)角平分線的性質(zhì)定理可得PE=PD,即可求解.【詳解】解:如圖,過P點(diǎn)作PE⊥OB于E,∵,PE⊥OB,∴PE=PD=4,即P到OB的距離是4,故答案為:4.【考點(diǎn)】本題考查了角平分線的性質(zhì),熟練掌握角平分線的性質(zhì)定理是解題的關(guān)鍵.5、(還可以添加∠A=∠D或∠ACB=∠EFD或AC∥DF,答案不唯一)【解析】【分析】根據(jù)等式的性質(zhì)可得BC=EF,再添加AB=DE,可利用SAS判定△ABC≌△DEF.【詳解】添加的條件是,∵,∴,即.∵在中中,.故答案為:.(還可以添加或或,答案不唯一)【考點(diǎn)】本題主要考查了三角形全等的判定,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對應(yīng)相等時(shí),角必須是兩邊的夾角.三、解答題1、(1)見解析(2)見解析【解析】【分析】(1)根據(jù)SAS證明結(jié)論即可;(2)作AM⊥BD于M,作AN⊥CE于N.由(1)可得BD=CE,S△BAD=S△CAE,然后根據(jù)角平分線的性質(zhì)即可解決問題.(1)證明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS);(2)證明:如圖,作AM⊥BD于M,作AN⊥CE于N.由△BAD≌△CAE,∴BD=CE,S△BAD=S△CAE,∵,∴AM=AN,∴點(diǎn)A在∠BFE平分線上,∴FA平分∠BFE.【考點(diǎn)】本題考查全等三角形的判定和性質(zhì)、三角形的面積,解題的關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),學(xué)會(huì)轉(zhuǎn)化的思想,巧用等積法進(jìn)行證明.2、(1)證明見解析;(2);理由見解析;(3).【解析】【分析】(1)方法1:在上截取,連接,得到全等三角形,進(jìn)而解決問題;方法2:延長到點(diǎn),使得,連接,得到全等三角形,進(jìn)而解決問題;(2)延長到點(diǎn),使,連接,證明,可得,即(3)連接,過點(diǎn)作于,證明,,進(jìn)而根據(jù)即可得出結(jié)論.【詳解】解:(1)方法1:在上截,連接,如圖.平分,.在和中,,,,.,..,.方法2:延長到點(diǎn),使得,連接,如圖.平分,.在和中,,.,.,.,,.(2)、、之間的數(shù)量關(guān)系為:.(或者:,).延長到點(diǎn),使,連接,如圖2所示.由(1)可知,.為等邊三角形.,.,..,為等邊三角形.,.,,即.在和中,,.,,.(3),,之間的數(shù)量關(guān)系為:.(或者:,)解:連接,過點(diǎn)作于,如圖3所示.,..在和中,,,,.在和中,,.,,.【考點(diǎn)】本題考查了三角形全等的性質(zhì)與判定,正確的添加輔助線是解題的關(guān)鍵.3、(1)∠ACB=∠DFE,AC=DF;(2)選擇添加條件AC=DE,證明見解析.【解析】【分析】(1)根據(jù)題意添加條件即可;(2)選擇添加條件AC=DE,根據(jù)“HL”證明即可.【詳解】(1)根據(jù)“ASA”,需添加的條件是∠ACB=∠DFE,根據(jù)“HL”,需添加的條件是AC=DF,故答案為:∠ACB=∠DFE,AC=DF;(2)選擇添加條件AC=DE證明,證明:∵∠ABC=∠DEF=90°,∴在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).【考點(diǎn)】本題考查了全等三角形的判定,熟知全等三角形的判定定理是解題關(guān)鍵,證明三角形全等時(shí)注意條件的對應(yīng).4、(1)①
4,②見解析;(2)6≤≤12【解析】【分析】(1)①根據(jù)三角形的面積公式計(jì)算即可;②先根據(jù)AAS證得△ABF≌△BCM,得出BF=MC,AF=BM,再利用AAS證得△AFD≌△CHD,得出AF=CH,即可得出結(jié)論;(2)連接CM,先利用SAS得出△≌△CBM,得出,再根據(jù)等底同高的三角形的面積相等得出,再利用三角形的面積公式得出EC的長,從而利用三角形的三邊關(guān)系得出的取值范圍;【詳解】解:(1)①∵,,,∴,②∵,,∴∠AFB=∠BMC=∠FMC=90°,∴∠ABF+∠BAF=90°,∵,∴∠ABF+∠CBM=90°,∴∠BAF=∠CBM,∵,∴△ABF≌△BCM,∴BF=MC,AF=BM,∵∠AFB=∠FMC=90°,∴AF//CM,∴∠FAC=∠HCD,∵為中點(diǎn),∴AD=CD,∵∠FDA=∠HDC,∴△AFD≌△CHD,∴AF=CH,∴BM=CH,∵BF=CM∴BF-BM=CM-CH∴.(2)連接CM,∵,,∴∠ABC=∠=90°,∴∠BA=∠CBM,∵,,∴△≌△CBM,∴,∵,,∴∠ABC+∠BAE=180°,∴AE//BC,∴,∵,,∴,∴EC=9在△ECM中,,則9-3≤CM≤9+3,∴6≤CM≤12,∴6≤≤12,【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì)以及三角形的三邊關(guān)系,靈活運(yùn)用全等三角形的判定是解題的關(guān)鍵.5、(1)證明見解析;(2)2.5;(3)100°.【解析】【分析】(1)由三角形內(nèi)角和定理和角平分線得出的度數(shù),再由三角形內(nèi)角和定理可求出的度
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒類生產(chǎn)技術(shù)規(guī)范制度
- 易制毒安全生產(chǎn)規(guī)章制度
- 2026上半年云南林業(yè)職業(yè)技術(shù)學(xué)院招聘16人備考考試題庫附答案解析
- 安全生產(chǎn)三個(gè)清單制度
- 存貨及生產(chǎn)成本管理制度
- 2026江西吉安吉州區(qū)興泰科技股份有限公司向社會(huì)招募就業(yè)見習(xí)人員參考考試試題附答案解析
- 鄉(xiāng)鎮(zhèn)農(nóng)業(yè)標(biāo)準(zhǔn)化生產(chǎn)制度
- 2026北京國防科技大學(xué)電子對抗學(xué)院幼兒園社會(huì)招聘3人參考考試試題附答案解析
- 變電站安全生產(chǎn)獎(jiǎng)罰制度
- 獸醫(yī)站安全生產(chǎn)制度
- 2025至2030中國手術(shù)機(jī)器人醫(yī)生培訓(xùn)體系構(gòu)建與手術(shù)收費(fèi)模式研究報(bào)告
- 動(dòng)環(huán)監(jiān)控系統(tǒng)FSU安裝調(diào)試操作指南
- 學(xué)校名稱更名申請書
- 2025伊金霍洛旗九泰熱力有限責(zé)任公司招聘專業(yè)技術(shù)人員50人公筆試備考試題附答案
- 2025-2026年人教版八年級上冊歷史期末考試卷及答案
- 港口碼頭建設(shè)施工方案
- 2025年蘭州新區(qū)幼兒園筆試題及答案
- 總部經(jīng)濟(jì)返稅合同范本
- 環(huán)境監(jiān)測站建設(shè)施工方案
- 快遞配送外包合同范本
- 火龍罐的市場前景分析
評論
0/150
提交評論