版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,DC是⊙O的直徑,弦AB⊥CD于M,則下列結論不一定成立的是()A.AM=BM B.CM=DM C. D.2、下列說法正確的是()A.擲一枚質地均勻的骰子,擲得的點數(shù)為3的概率是.B.若AC、BD為菱形ABCD的對角線,則的概率為1.C.概率很小的事件不可能發(fā)生.D.通過少量重復試驗,可以用頻率估計概率.3、在圓內接四邊形ABCD中,∠A、∠B、∠C的度數(shù)之比為2:4:7,則∠B的度數(shù)為()A.140° B.100° C.80° D.40°4、將等邊三角形繞其中心旋轉n時與原圖案完全重合,那么n的最小值是()A.60 B.90 C.120 D.1805、如圖,AB是的直徑,CD是的弦,且,,,則圖中陰影部分的面積為()A. B. C. D.6、在不透明口袋內裝有除顏色外完全相同的5個小球,其中紅球2個,白球3個.攪拌均勻后,隨機抽取一個小球,是紅球的概率為()A. B. C. D.7、下列判斷正確的個數(shù)有()①直徑是圓中最大的弦;②長度相等的兩條弧一定是等?。虎郯霃较嗟鹊膬蓚€圓是等圓;④弧分優(yōu)弧和劣?。虎萃粭l弦所對的兩條弧一定是等?。瓵.1個 B.2個 C.3個 D.4個8、“2022年春節(jié)期間,中山市會下雨”這一事件為()A.必然事件 B.不可能事件 C.確定事件 D.隨機事件第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、在一個暗箱里放入除顏色外其它都相同的1個紅球和11個黃球,攪拌均勻后隨機任取一球,取到紅球的概率是_____.2、在一個布袋中,裝有除顏色外其它完全相同的2個紅球和2個白球,如果從中隨機摸出兩個球,那么摸到的兩個紅球的概率是________.3、已知⊙A的半徑為5,圓心A(4,3),坐標原點O與⊙A的位置關系是______.4、如果一個扇形的弧長等于它所在圓的半徑,那么此扇形叫做“完美扇形”.已知某個“完美扇形”的周長等于6,那么這個扇形的面積等于_____.5、如圖,點A,B,C在⊙O上,四邊形OABC是平行四邊形,若對角線AC=2,則的長為_____.6、如圖,正方形ABCD的邊長為1,⊙O經(jīng)過點C,CM為⊙O的直徑,且CM=1.過點M作⊙O的切線分別交邊AB,AD于點G,H.BD與CG,CH分別交于點E,F(xiàn),⊙O繞點C在平面內旋轉(始終保持圓心O在正方形ABCD內部).給出下列四個結論:①HD=2BG;②∠GCH=45°;③H,F(xiàn),E,G四點在同一個圓上;④四邊形CGAH面積的最大值為2.其中正確的結論有_____(填寫所有正確結論的序號).7、如圖,將矩形繞點A順時針旋轉到矩形的位置,旋轉角為.若,則的大小為________(度).三、解答題(7小題,每小題0分,共計0分)1、如圖,在平面直角坐標系中,△ABC的頂點坐標分別為A(﹣1,0),B(﹣4,1),C(﹣2,2).(1)直接寫出點B關于原點對稱的點B′的坐標:;(2)平移△ABC,使平移后點A的對應點A1的坐標為(2,1),請畫出平移后的△A1B1C1;(3)畫出△ABC繞原點O逆時針旋轉90°后得到的△A2B2C2.2、在直角坐標平面內,三個頂點的坐標分別為、、(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).(1)將向下平移4個單位長度得到的,則點的坐標是____________;(2)以點B為位似中心,在網(wǎng)格上畫出,使與位似,且位似比為2:1,求點的坐標;(3)若是外接圓,求的半徑.3、如圖,四邊形ABCD是正方形.△ABE是等邊三角形,M為對角線BD(不含B,D點)上任意一點,將線段BM繞點B逆時針旋轉60°得到BN,連接EN,AM、CM.請判斷線段AM和線段EN的數(shù)量關系,并說明理由.4、如圖,是由若干個完全相同的小正方體組成的一個幾何體.(1)請畫出這個幾何體的從左面看和從上面看的形狀圖;(用陰影表示)(2)已知每個小正方體的邊長是2cm,求出這個幾何體的表面積是多少?5、為堅持“五育并舉”,落實立德樹人根本任務,教育部出臺了“五項管理”舉措.我校對九年級部分家長就“五項管理”知曉情況作調查,A:完全知曉,B:知曉,C:基本知曉,D:不知曉.九年級組長將調查情況制成了如下的條形統(tǒng)計圖和扇形統(tǒng)計圖.請根據(jù)圖中信息,回答下列問題:(1)共調查了多少名家長?寫出圖2中選項所對應的圓心角,并補齊條形統(tǒng)計圖;(2)我校九年級共有450名家長,估計九年級“不知曉五項管理”舉措的家長有多少人;(3)已知選項中男女家長數(shù)相同,若從選項家長中隨機抽取2名家長參加“家校共育”座談會,請用列表或畫樹狀圖的方法,求抽取家長都是男家長的概率.6、電影《長津湖》以抗美援朝戰(zhàn)爭第二次戰(zhàn)役中的長津湖戰(zhàn)役為背景,講述71年前,中國人民志愿軍赴朝作戰(zhàn),在極寒嚴酷環(huán)境下,東線作戰(zhàn)部隊憑著鋼鐵意志和英勇無畏的戰(zhàn)斗精神一路追擊,奮勇殺敵的真實歷史.為紀念歷史,緬懷先烈,我校團委將電影中的四位歷史英雄人物頭像制成編號為A、B、C、D的四張卡片(除編號和頭像外其余完全相同),活動時學生根據(jù)所抽取的卡片來講述他們在影片中波瀾壯闊、可歌可泣的歷史事跡.規(guī)則如下:先將四張卡片背面朝上,洗勻放好,小強從中隨機抽取一張,然后放回并洗勻,小葉再從中隨機抽取一張.請用列表或畫樹狀圖的方法求小強和小葉抽到的兩張卡片恰好是同一英雄人物的概率.7、在同樣的條件下對某種小麥種子進行發(fā)芽試驗,統(tǒng)計發(fā)芽種子數(shù),獲得如下頻數(shù)表.實驗種植數(shù)(粒)1550100200500100020003000發(fā)芽頻數(shù)04459218847695119002850(1)估計該麥種的發(fā)芽概率.(2)如果播種該種小麥每公頃所需麥苗數(shù)為4000000棵,種子發(fā)芽后的成秧率為80%,該麥種的千粒質量為50g.那么播種3公頃該種小麥,估計約需麥種多少千克(精確到1kg)?-參考答案-一、單選題1、B【分析】根據(jù)垂徑定理“垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧”進行判斷即可得.【詳解】解:∵弦AB⊥CD,CD過圓心O,∴AM=BM,,,即選項A、C、D選項說法正確,不符合題意,當根據(jù)已知條件得CM和DM不一定相等,故選B.【點睛】本題考查了垂徑定理,解題的關鍵是掌握垂徑定理.2、B【分析】概率是指事情發(fā)生的可能性,等可能發(fā)生的事件的概率相同,小概率事件是指發(fā)生的概率比較小,不代表不會發(fā)生,通過大量重復試驗才能用頻率估計概率,利用這些對四個選項一次判斷即可.【詳解】A項:擲一枚質地均勻的骰子,每個面朝上的概率都是一樣的都是,故A錯誤,不符合題意;B項:若AC、BD為菱形ABCD的對角線,由菱形的性質:對角線相互垂直平分得知兩條線段一定垂直,則AC⊥BD的概率為1是正確的,故B正確,符合題意;C項:概率很小的事件只是發(fā)生的概率很小,不代表不會發(fā)生,故C錯誤,不符合題意;D項:通過大量重復試驗才能用頻率估計概率,故D錯誤,不符合題意.故選B【點睛】本題考查概率的命題真假,準確理解事務發(fā)生的概率是本題關鍵.3、C【分析】,,,進而求解的值.【詳解】解:由題意知∵∴∴∵∴故選C.【點睛】本題考查了圓內接四邊形中對角互補.解題的關鍵在于根據(jù)角度之間的數(shù)量關系求解.4、C【分析】根據(jù)旋轉對稱圖形的概念(把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角),找到旋轉角,求出其度數(shù).【詳解】解:等邊三角形繞其中心旋轉n時與原圖案完全重合,因而繞其中心旋轉的最小度數(shù)是=120°.故選C.【點睛】本題考查了根據(jù)旋轉對稱性,掌握旋轉的性質是解題的關鍵.5、C【分析】如圖,連接OC,OD,可知是等邊三角形,,,,計算求解即可.【詳解】解:如圖連接OC,OD∵∴是等邊三角形∴由題意知,故選C.【點睛】本題考查了扇形的面積,等邊三角形等知識.解題的關鍵在于用扇形表示陰影面積.6、A【分析】用紅球的個數(shù)除以所有球的個數(shù)即可求得抽到紅球的概率.【詳解】解:∵共有5個球,其中紅球有2個,∴P(摸到紅球)=,故選:A.【點睛】此題主要考查概率的意義及求法.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.7、B【詳解】①直徑是圓中最大的弦;故①正確,②同圓或等圓中長度相等的兩條弧一定是等??;故②不正確③半徑相等的兩個圓是等圓;故③正確④弧分優(yōu)弧、劣弧和半圓,故④不正確⑤同一條弦所對的兩條弧可位于弦的兩側,故不一定相等,則⑤不正確.綜上所述,正確的有①③故選B【點睛】本題考查了圓相關概念,掌握弦與弧的關系以及相關概念是解題的關鍵.8、D【分析】根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可.【詳解】解:“2022年年春節(jié)期間,中山市會下雨”這一事件為隨機事件,故選:D.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.二、填空題1、【分析】由題意可知,共有12個球,取到每個球的機會均等,根據(jù)概率公式解題.【詳解】解:P(紅球)=故答案為:【點睛】本題考查簡單事件的概率,是基礎考點,掌握相關知識是解題關鍵.2、【分析】畫樹狀圖,共有12個等可能的結果,摸到的兩個球顏色紅色的結果有2個,再由概率公式求解即可.【詳解】解:畫樹狀圖如圖:共有12個等可能的結果,摸到的兩個紅球的有2種結果,摸到的兩個紅球的概率是,故答案為:.【點睛】本題考查列表法或畫樹狀圖求概率,解題的關鍵是準確畫出樹狀圖或列出表格.3、在⊙A上【分析】先根據(jù)兩點間的距離公式計算出OA,然后根據(jù)點與圓的位置關系的判定方法判斷點O與⊙A的位置關系.【詳解】解:∵點A的坐標為(4,3),∴OA==5,∵半徑為5,∴OA=r,∴點O在⊙A上.故答案為:在⊙A上.【點睛】本題考查了點與圓的位置關系:點與圓的位置關系有3種.設⊙O的半徑為r,點P到圓心的距離OP=d,當點P在圓外?d>r;當點P在圓上?d=r;當點P在圓內?d<r.4、2【分析】根據(jù)扇形的面積公式S=,代入計算即可.【詳解】解:∵“完美扇形”的周長等于6,∴半徑r為=2,弧長l為2,這個扇形的面積為:==2.答案為:2.【點睛】本題考查了扇形的面積公式,扇形面積公式與三角形面積公式十分類似,為了便于記憶,只要把扇形看成一個曲邊三角形,把弧長l看成底,R看成底邊上的高即可.5、【分析】連接OB,交AC于點D,根據(jù)有一組鄰邊相等的平行四邊形是菱形,可得四邊形OABC為菱形,根據(jù)菱形的性質可得:,,,根據(jù)等邊三角形的判定得出為等邊三角形,由此得出,在直角三角形中利用勾股定理即可確定圓的半徑,然后代入弧長公式求解即可.【詳解】解:如圖所示,連接OB,交AC于點D,∵四邊形OABC為平行四邊形,,∴四邊形OABC為菱形,∴,,,∵,∴為等邊三角形,∴,∴,在中,設,則,∴,即,解得:或(舍去),∴的長為:,故答案為:.【點睛】題目主要考查菱形的判定和性質,等邊三角形的判定和性質,勾股定理,弧長公式等,熟練掌握各個定理和公式是解題關鍵.6、②③④【分析】根據(jù)切線的性質,正方形的性質,通過三角形全等,證明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判斷前兩個結論;運用對角互補的四邊形內接于圓,證明∠GHF+∠GEF=180°,取GH的中點P,連接PA,則PA+PC≥AC,當PC最大時,PA最小,根據(jù)直徑是圓中最大的弦,故PC=1時,PA最小,計算即可.【詳解】∵GH是⊙O的切線,M為切點,且CM是⊙O的直徑,∴∠CMH=90°,∵四邊形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可證,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,無法確定HD=2BG,故①錯誤;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正確;∵△CMH≌△CDH,BD是正方形的對角線,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF+∠GCH+∠EFC=∠DHF+∠HDF+∠HFD=180°,根據(jù)對角互補的四邊形內接于圓,∴H,F(xiàn),E,G四點在同一個圓上,故③正確;∵正方形ABCD的邊長為1,∴=1=,∠GAH=90°,AC=取GH的中點P,連接PA,∴GH=2PA,∴=,∴當PA取最小值時,有最大值,連接PC,AC,則PA+PC≥AC,∴PA≥AC-PC,∴當PC最大時,PA最小,∵直徑是圓中最大的弦,∴PC=1時,PA最小,∴當A,P,C三點共線時,且PC最大時,PA最小,∴PA=-1,∴最大值為:1-(-1)=2-,∴四邊形CGAH面積的最大值為2,∴④正確;故答案為:②③④.【點睛】本題考查了切線的性質,直徑是最大的弦,三角形的全等,直角三角形斜邊上的中線,四點共圓,正方形的性質,熟練掌握圓的性質,靈活運用直角三角形的性質,線段最短原理是解題的關鍵.7、20【分析】先利用旋轉的性質得到∠ADC=∠D=90°,∠DAD′=α,再利用四邊形內角和計算出∠BAD‘=70°,然后利用互余計算出∠DAD′,從而得到α的值.【詳解】∵矩形ABCD繞點A順時針旋轉到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,即α=20°.故答案為20.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.三、解答題1、(1)(4,﹣1);(2)見解析;(3)見解析.【分析】(1)根據(jù)關于原點對稱的兩點的橫縱坐標均與原來點的橫縱坐標互為相反數(shù),據(jù)此可得答案;(2)將三個點分別向右平移3個單位、再向上平移1個單位,繼而首尾順次連接即可;(3)將三個點分別繞原點O逆時針旋轉90°后得到對應點,再首尾順次連接即可.【詳解】(1)點B關于原點對稱的點B′的坐標為(4,﹣1),故答案為:(4,﹣1);(2)如圖所示,△A1B1C1即為所求.(3)如圖所示,△A2B2C2即為所求.【點睛】本題主要考查作圖—平移變換、旋轉變換,解題的關鍵是掌握平移變換和旋轉變換的定義與性質,并據(jù)此得出變換后的對應點.2、(1)(2,-2)(2)圖見解析,(1,0)(3)【分析】(1)根據(jù)平移的性質得出平移后的圖從而得到點的坐標;(2)根據(jù)位似圖形的性質得出對應點位置,從而得到點的坐標;(3)證明是直角三角形,根據(jù)直角三角形外切圓半徑公式計算即可.(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)由圖可知:∵,,∴∴是直角三角形,∴能蓋住的最小圓即為外接圓,設其半徑為R;則【點睛】本題考查作圖—平移變換,作圖—位似變換、三角形外接圓,正確理解位似變換的定義,會進行位似變換的作圖是解題的關鍵.3、AM=EN,理由見解析【分析】根據(jù)旋轉性質和等邊三角形的性質可證得∠ABM=∠EBN,BM=BN,AB=BE,根據(jù)全等三角形的判定證明△ABM≌△EBN即可得出結論.【詳解】解:AM=EN,理由為:∵△ABE是等邊三角形,∴AB=BE,∠ABE=60°,即∠EBN=∠ABN=60°,∵線段BM繞點B逆時針旋轉60°得到BN,∴BM=BN,∠MBN=60°,即∠ABM+∠ABN=60°,∴∠ABM=∠EBN,在△ABM和△EBN中,,∴△ABM≌△EBN(SAS),∴AM=EN.【點睛】本題考查等邊三角形的性質、旋轉性質、全等三角形的判定與性質,熟練掌握用全等三角形證明線段相等是解答的關鍵.4、(1)見解析(2)152cm2.【分析】(1)左視圖3列,每列小正方形數(shù)目分別為3,2,1;俯視圖有3列,每行小正方形數(shù)目分別為3,2,1,;(2)先數(shù)出各個面小正方形的個數(shù),再乘每個小正方形的面積可計算出表面積.(1)如圖所示:(2)(2×2)×(6×6+2)=4×38=152(cm2).故這個幾何體的表面積是152cm2.【點睛】本題考查作圖-三視圖.在畫圖時一定要將物體的邊緣、棱、頂點都體現(xiàn)出來,看得見的輪廓線都畫成實線,看不見的畫成虛線,不能漏掉.本題畫幾何體的三視圖時應注意小正方形的數(shù)目及位置.5、(1)50,,圖見解析(2)36(3)【分析】(1)利用A選項的人數(shù)和A選項所占的百分數(shù)求解調查的家長人數(shù),再由B選項所占的百分數(shù)求解B選項的人數(shù),進而可求出D選項的人數(shù),即可補全條形統(tǒng)計圖,再求出D選項所占的百分數(shù)即可求得D選項所對應的圓心角;(2)根據(jù)家長總人數(shù)乘以D選項所占的百分數(shù)即可求解;(3)根據(jù)(1)中求出的D選項人數(shù)可求得男女家長數(shù),再用列表法求解即可.(1)解:家長總人數(shù):11÷22%=50(人),B選項人數(shù):50×40%=20(人),D選項人數(shù):50-11-20-15
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒店服務質量監(jiān)督制度
- 財務風險管理與內部控制制度
- 秦皇島教育培訓機構哪家好
- 活動策劃培訓課件
- 2026年信息安全保密手冊網(wǎng)絡安全專業(yè)人員考試題集
- 2026年審計理論與實務操作考試題庫及答案
- 2026年中醫(yī)藥膳與現(xiàn)代營養(yǎng)學結合的實踐試題
- 2026年職場精英必修課商業(yè)戰(zhàn)略分析實踐試題集及答案
- 2026年AI金融智能投顧與風險管理測試題
- 2026年財經(jīng)法規(guī)與會計實務綜合練習題集
- 農村承包土地合同范本
- 吉利汽車開發(fā)流程
- 《醫(yī)療機構靜脈用細胞毒性藥物調配操作質量管理工作規(guī)范》
- 五年級數(shù)學下冊 分層訓練 2.1 因數(shù)和倍數(shù) 同步練習 (含答案)(人教版)
- 護理部主任年終述職
- 電力行業(yè)安全生產操作規(guī)程
- 螺桿壓縮機PSSR檢查表
- GB/T 4937.34-2024半導體器件機械和氣候試驗方法第34部分:功率循環(huán)
- TCALC 003-2023 手術室患者人文關懷管理規(guī)范
- 中藥熱奄包在呼吸系統(tǒng)疾病中的應用研究
- HACCP計劃年度評審報告
評論
0/150
提交評論