福州市三牧中學八年級上冊壓軸題數(shù)學模擬試卷及答案_第1頁
福州市三牧中學八年級上冊壓軸題數(shù)學模擬試卷及答案_第2頁
福州市三牧中學八年級上冊壓軸題數(shù)學模擬試卷及答案_第3頁
福州市三牧中學八年級上冊壓軸題數(shù)學模擬試卷及答案_第4頁
福州市三牧中學八年級上冊壓軸題數(shù)學模擬試卷及答案_第5頁
已閱讀5頁,還剩35頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福州市三牧中學八年級上冊壓軸題數(shù)學模擬試卷及答案一、壓軸題1.某校七年級數(shù)學興趣小組對“三角形內(nèi)角或外角平分線的夾角與第三個內(nèi)角的數(shù)量關(guān)系”進行了探究.(1)如圖1,在△ABC中,∠ABC與∠ACB的平分線交于點P,∠A=64°,則∠BPC=;(2)如圖2,△ABC的內(nèi)角∠ACB的平分線與△ABC的外角∠ABD的平分線交于點E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如圖3,∠CBM、∠BCN為△ABC的外角,∠CBM、∠BCN的平分線交于點Q,請你寫出∠BQC與∠A的數(shù)量關(guān)系,并說明理由;(4)如圖4,△ABC外角∠CBM、∠BCN的平分線交于點Q,∠A=64°,∠CBQ,∠BCQ的平分線交于點P,則∠BPC=゜,延長BC至點E,∠ECQ的平分線與BP的延長線相交于點R,則∠R=゜.2.如圖,在平面直角坐標系中,,,,點、在軸上且關(guān)于軸對稱.(1)求點的坐標;(2)動點以每秒2個單位長度的速度從點出發(fā)沿軸正方向向終點運動,設(shè)運動時間為秒,點到直線的距離的長為,求與的關(guān)系式;(3)在(2)的條件下,當點到的距離為時,連接,作的平分線分別交、于點、,求的長.3.在中,,是直線上一點,在直線上,且.(1)如圖1,當D在上,在延長線上時,求證:;(2)如圖2,當為等邊三角形時,是的延長線上一點,在上時,作,求證:;(3)在(2)的條件下,的平分線交于點,連,過點作于點,當,時,求的長度.4.已知在△ABC中,AB=AC,射線BM、BN在∠ABC內(nèi)部,分別交線段AC于點G、H.(1)如圖1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于點D,分別交BC、BM于點E、F.①求證:∠1=∠2;②如圖2,若BF=2AF,連接CF,求證:BF⊥CF;(2)如圖3,點E為BC上一點,AE交BM于點F,連接CF,若∠BFE=∠BAC=2∠CFE,求的值.5.已知和都是等腰三角形,,,.(初步感知)(1)特殊情形:如圖①,若點,分別在邊,上,則__________.(填>、<或=)(2)發(fā)現(xiàn)證明:如圖②,將圖①中的繞點旋轉(zhuǎn),當點在外部,點在內(nèi)部時,求證:.(深入研究)(3)如圖③,和都是等邊三角形,點,,在同一條直線上,則的度數(shù)為__________;線段,之間的數(shù)量關(guān)系為__________.(4)如圖④,和都是等腰直角三角形,,點、、在同一直線上,為中邊上的高,則的度數(shù)為__________;線段,,之間的數(shù)量關(guān)系為__________.(拓展提升)(5)如圖⑤,和都是等腰直角三角形,,將繞點逆時針旋轉(zhuǎn),連結(jié)、.當,時,在旋轉(zhuǎn)過程中,與的面積和的最大值為__________.6.在△ABC中,已知∠A=α.(1)如圖1,∠ABC、∠ACB的平分線相交于點D.①當α=70°時,∠BDC度數(shù)=度(直接寫出結(jié)果);②∠BDC的度數(shù)為(用含α的代數(shù)式表示);(2)如圖2,若∠ABC的平分線與∠ACE角平分線交于點F,求∠BFC的度數(shù)(用含α的代數(shù)式表示).(3)在(2)的條件下,將△FBC以直線BC為對稱軸翻折得到△GBC,∠GBC的角平分線與∠GCB的角平分線交于點M(如圖3),求∠BMC的度數(shù)(用含α的代數(shù)式表示).7.如圖(1),AB=4,AC⊥AB,BD⊥AB,AC=BD=3.點P在線段AB上以1的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為(s).(1)若點Q的運動速度與點P的運動速度相等,當=1時,△ACP與△BPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關(guān)系;(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設(shè)點Q的運動速度為,是否存在實數(shù),使得△ACP與△BPQ全等?若存在,求出相應(yīng)的、的值;若不存在,請說明理由.8.如圖,△ABC是等邊三角形,△ADC與△ABC關(guān)于直線AC對稱,AE與CD垂直交BC的延長線于點E,∠EAF=45°,且AF與AB在AE的兩側(cè),EF⊥AF.(1)依題意補全圖形.(2)①在AE上找一點P,使點P到點B,點C的距離和最短;②求證:點D到AF,EF的距離相等.9.在△ABC中,∠BAC=45°,CD⊥AB,垂足為點D,M為線段DB上一動點(不包括端點),點N在直線AC左上方且∠NCM=135°,CN=CM,如圖①.(1)求證:∠ACN=∠AMC;(2)記△ANC得面積為5,記△ABC得面積為5.求證:;(3)延長線段AB到點P,使BP=BM,如圖②.探究線段AC與線段DB滿足什么數(shù)量關(guān)系時對于滿足條件的任意點M,AN=CP始終成立?(寫出探究過程)10.如圖1,在平面直角坐標系中,點的坐為,點的坐標為,在中,軸交軸于點.(1)求和的度數(shù);(2)如圖,在圖的基礎(chǔ)上,以點為一銳角頂點作,,交于點,求證:;(3)在第()問的條件下,若點的標為,求四邊形的面積.11.已知在中,,點在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數(shù);(2)如圖2,將沿射線的方向平移,當點在上時,求度數(shù);(3)將在直線上平移,當以為頂點的三角形是直角三角形時,直接寫出度數(shù).12.已知:如圖1,直線,EF分別交AB,CD于E,F(xiàn)兩點,,的平分線相交于點K.(1)求的度數(shù);(2)如圖2,,的平分線相交于點,問與的度數(shù)是否存在某種特定的等量關(guān)系?寫出結(jié)論并證明;(3)在圖2中作,的平分線相交于點,作,的平分線相交于點,依此類推,作,的平分線相交于點,請用含的n式子表示的度數(shù).(直接寫出答案,不必寫解答過程)13.在我們認識的多邊形中,有很多軸對稱圖形.有些多邊形,邊數(shù)不同對稱軸的條數(shù)也不同;有些多邊形,邊數(shù)相同但卻有不同數(shù)目的對稱軸.回答下列問題:(1)非等邊的等腰三角形有________條對稱軸,非正方形的長方形有________條對稱軸,等邊三角形有___________條對稱軸;(2)觀察下列一組凸多邊形(實線畫出),它們的共同點是只有1條對稱軸,其中圖1-2和圖1-3都可以看作由圖1-1修改得到的,仿照類似的修改方式,請你在圖1-4和圖1-5中,分別修改圖1-2和圖1-3,得到一個只有1條對稱軸的凸五邊形,并用實線畫出所得的凸五邊形;(3)小明希望構(gòu)造出一個恰好有2條對稱軸的凸六邊形,于是他選擇修改長方形,圖2中是他沒有完成的圖形,請用實線幫他補完整個圖形;(4)請你畫一個恰好有3條對稱軸的凸六邊形,并用虛線標出對稱軸.14.數(shù)學活動課上,老師出了這樣一個題目:“已知:于,點、分別在和上,作線段和(如圖1),使.求證:”.(1)聰聰同學給出一種證明問題的輔助線:如圖2,過作,交于.請你根據(jù)聰聰同學提供的輔助線(或自己添加其它輔助線),給出問題的證明.(2)若點在直線下方,且知,直接寫出和之間的數(shù)量關(guān)系.15.現(xiàn)給出一個結(jié)論:直角三角形斜邊的中線等于斜邊的一半;該結(jié)論是正確的,用圖形語言可以表示為:如圖1在中,,若點D為AB的中點,則.請結(jié)合上述結(jié)論解決如下問題:已知,點P是射線BA上一動點(不與A,B重合)分別過點A,B向直線CP作垂線,垂足分別為E,F,其中Q為AB的中點(1)如圖2,當點P與點Q重合時,AE與BF的位置關(guān)系____________;QE與QF的數(shù)量關(guān)系是__________(2)如圖3,當點P在線段AB上不與點Q重合時,試判斷QE與QF的數(shù)量關(guān)系,并給予證明.(3)如圖4,當點P在線段BA的延長線上時,此時(2)中的結(jié)論是否成立?請畫出圖形并寫出主要證明思路.16.如圖,在中,,,點D在邊BC上運動(點D不與點重合),連接AD,作,DE交邊AC于點E.(1)當時,,(2)當DC等于多少時,,請說明理由;(3)在點D的運動過程中,的形狀可以是等腰三角形嗎?若可以,請求出的度數(shù);若不可以,請說明理由.17.在△ABC中,已知∠A=α.(1)如圖1,∠ABC、∠ACB的平分線相交于點D.求∠BDC的大?。ㄓ煤恋拇鷶?shù)式表示);(2)如圖2,若∠ABC的平分線與∠ACE的平分線交于點F,求∠BFC的大?。ㄓ煤恋拇鷶?shù)式表示);(3)在(2)的條件下,將△FBC以直線BC為對稱軸翻折得到△GBC,∠GBC的平分線與∠GCB的平分線交于點M(如圖3),求∠BMC的度數(shù)(用含α的代數(shù)式表示).18.探究發(fā)現(xiàn):如圖①,在中,內(nèi)角的平分線與外角的平分線相交于點.(1)若,則;若,則;(2)由此猜想:與的關(guān)系為(不必說明理由).拓展延伸:如圖②,四邊形的內(nèi)角與外角的平分線相交于點,.(3)若,,求的度數(shù),由此猜想與,之間的關(guān)系,并說明理由.19.直線與相互垂直,垂足為點,點在射線上運動,點在射線上運動,點、點均不與點重合.(1)如圖1,平分,平分,若,求的度數(shù);(2)如圖2,平分,平分,的反向延長線交于點.①若,則______度(直接寫出結(jié)果,不需說理);②點、在運動的過程中,是否發(fā)生變化,若不變,試求的度數(shù):若變化,請說明變化規(guī)律.(3)如圖3,已知點在的延長線上,的角平分線、的角平分線與的角平分線所在的直線分別相交于的點、,在中,如果有一個角的度數(shù)是另一個角的4倍,請直接寫出的度數(shù).20.(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,點A、D、E在同一直線上,連接BE.①請直接寫出∠AEB的度數(shù)為_____;②試猜想線段AD與線段BE有怎樣的數(shù)量關(guān)系,并證明;(2)拓展探究:圖2,△ACB和△DCE均為等腰三角形,∠ACB=∠DCE=90°,點A、D、E在同-直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數(shù)線段CM、AE、BE之間的數(shù)量關(guān)系,并說明理由.【參考答案】***試卷處理標記,請不要刪除一、壓軸題1.(1)122°;(2);(3);(4)119,29;【解析】【分析】(1)根據(jù)三角形的內(nèi)角和角平分線的定義;(2)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,用與表示出,再利用與表示出,于是得到結(jié)論;(3)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和以及角平分線的定義表示出與,然后再根據(jù)三角形的內(nèi)角和定理列式整理即可得解;(4)根據(jù)(1),(3)的結(jié)論可以得出∠BPC的度數(shù);根據(jù)(2)的結(jié)論可以得到∠R的度數(shù).【詳解】解:(1)、分別平分和,,,,,,,,故答案為:;(2)如圖2示,和分別是和的角平分線,,,又是的一外角,,,是的一外角,;(3),,,,,結(jié)論.(4)由(3)可知,,再根據(jù)(1),可得;由(2)可得:;故答案為:119,29.【點睛】本題考查了三角形的外角性質(zhì)與內(nèi)角和定理,熟記三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵.2.(1)C(4,0);(2);(3).【解析】【分析】(1)根據(jù)對稱的性質(zhì)知為等邊三角形,利用直角三角形中30度角的性質(zhì)即可求得答案;(2)利用面積法可求得,再利用坐標系中點的特征即可求得答案;(3)利用(2)的結(jié)論求得,利用角平分線的性質(zhì)證得,求得,利用面積法求得,再利用直角三角形中30度角的性質(zhì)即可求得答案.【詳解】(1)∵點、關(guān)于軸對稱,∴,∴,∵,∴為等邊三角形,∴,∴,∴點C的坐標為:;(2)連接,∵,∴,∵,∴,∵,∴,∵,∴,即:;(3)∵點到的距離為,∴,∴,∴,延長交于點,過點作軸于點,連接、,∵為的角平分線,為等邊三角形,∴,,∵,,∴,∴,設(shè),在中,,∴,∵,∴,∴,∴,∴,∵,,∴,∵,∴,在中,,,∴,∴,,∴,∴.【點睛】本題是三角形綜合題,涉及的知識有:含30度直角三角形的性質(zhì),全等三角形的判定與性質(zhì),外角性質(zhì),角平分線的性質(zhì),等邊三角形的判定和性質(zhì),坐標與圖形性質(zhì),熟練掌握性質(zhì)及定理、靈活運用面積法求線段的長是解本題的關(guān)鍵.3.(1)見解析;(2)見解析;(3)3【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)和外角的性質(zhì)即可得到結(jié)論;(2)過E作EF∥AC交AB于F,根據(jù)已知條件得到△ABC是等邊三角形,推出△BEF是等邊三角形,得到BE=EF,∠BFE=60°,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;(3)連接AF,證明△ABF≌△CBF,得AF=CF,再證明DH=AH=CF=3.【詳解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等邊三角形,∴∠B=60°,∴△BEF是等邊三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF與△CAD中,,∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)連接AF,如圖3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=AF=CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【點睛】本題考查了全等三角形的判定與性質(zhì),等腰三角形和直角三角形的性質(zhì),三角形的外角的性質(zhì),等邊三角形的判定和性質(zhì),證明三角形全等是解決問題的關(guān)鍵.4.(1)①見解析;②見解析;(2)2【解析】【分析】(1)①只要證明∠2+∠BAF=∠1+∠BAF=60°即可解決問題;②只要證明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,連接AK.只要證明△ABK≌CAF,可得S△ABK=S△AFC,再證明AF=FK=BK,可得S△ABK=S△AFK,即可解決問題;【詳解】(1)①證明:如圖1中,∵AB=AC,∠ABC=60°∴△ABC是等邊三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②證明:如圖2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,連接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴.【點睛】本題考查全等三角形的判定和性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的判定和性質(zhì)、直角三角形30度角性質(zhì)等知識,解題的關(guān)鍵是能夠正確添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸題.5.(1)=;(2)證明見解析;(3)60°,BD=CE;(4)90°,AM+BD=CM;(5)7【解析】【分析】(1)由DE∥BC,得到,結(jié)合AB=AC,得到DB=EC;(2)由旋轉(zhuǎn)得到的結(jié)論判斷出△DAB≌△EAC,得到DB=CE;(3)根據(jù)等邊三角形的性質(zhì)和全等三角形的判定定理證明△DAB≌△EAC,根據(jù)全等三角形的性質(zhì)求出結(jié)論;(4)根據(jù)全等三角形的判定和性質(zhì)和等腰直角三角形的性質(zhì)即可得到結(jié)論;(5)根據(jù)旋轉(zhuǎn)的過程中△ADE的面積始終保持不變,而在旋轉(zhuǎn)的過程中,△ADC的AC始終保持不變,即可.【詳解】[初步感知](1)∵DE∥BC,∴,∵AB=AC,∴DB=EC,故答案為:=,(2)成立.理由:由旋轉(zhuǎn)性質(zhì)可知∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如圖③,設(shè)AB,CD交于O,∵△ABC和△ADE都是等邊三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB和△EAC中,∴△DAB≌△EAC(SAS),∴∠ADB=∠AEC=135°,BD=CE,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE都是等腰直角三角形,AM為△ADE中DE邊上的高,∴AM=EM=MD,∴AM+BD=CM;故答案為:90°,AM+BD=CM;【拓展提升】(5)如圖,由旋轉(zhuǎn)可知,在旋轉(zhuǎn)的過程中△ADE的面積始終保持不變,△ADE與△ADC面積的和達到最大,∴△ADC面積最大,∵在旋轉(zhuǎn)的過程中,AC始終保持不變,∴要△ADC面積最大,∴點D到AC的距離最大,∴DA⊥AC,∴△ADE與△ADC面積的和達到的最大為2+×AC×AD=5+2=7,故答案為7.【點睛】此題是幾何變換綜合題,主要考查了旋轉(zhuǎn)和全等三角形的性質(zhì)和判定,旋轉(zhuǎn)過程中面積變化分析,解本題的關(guān)鍵是三角形全等的判定.6.(1)(1)①125°;②,(2);(3)【解析】【分析】(1)①由三角形內(nèi)角和定理易得∠ABC+∠ACB=110°,然后根據(jù)角平分線的定義,結(jié)合三角形內(nèi)角和定理可求∠BDC;②由三角形內(nèi)角和定理易得∠ABC+∠ACB=180°-∠A,采用①的推導方法即可求解;(2)由三角形外角性質(zhì)得,然后結(jié)合角平分線的定義求解;(3)由折疊的對稱性得,結(jié)合(1)②的結(jié)論可得答案.【詳解】解:(1)①∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣70°)=125°②∵∠ABC,∠DCB=∠ACB,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=90°+α.故答案分別為125°,90°+α.(2)∵BF和CF分別平分∠ABC和∠ACE∴,,∴=即.(3)由軸對稱性質(zhì)知:,由(1)②可得,∴.【點睛】本題考查三角形中與角平分線有關(guān)的角度計算,熟練掌握三角形內(nèi)角和定理,以及三角形的外角性質(zhì)是解題的關(guān)鍵.7.(1)全等,垂直,理由詳見解析;(2)存在,或【解析】【分析】(1)在t=1的條件下,找出條件判定△ACP和△BPQ全等,再根據(jù)全等三角形的性質(zhì)和直角三角形的兩個銳角互余的性質(zhì),可證∠CPQ=90°,即可判斷線段PC和線段PQ的位置關(guān)系;(2)本題主要在動點的條件下,分情況討論,利用三角形全等時對應(yīng)邊相等的性質(zhì)進行解答即可.【詳解】(1)當t=1時,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90*.∴∠CPQ=90°,即線段PC與線段PQ垂直;(2)①若△ACP≌△BPQ,則AC=BP,AP=BQ,解得;②若△ACP≌△BQP,則AC=BQ,AP=BP,解得:綜上所述,存在或使得△ACP與△BPQ全等.【點睛】本題主要考查三角形全等與動點問題,熟練掌握三角形全等的性質(zhì)與判定定理,是解決本題的關(guān)鍵.8.(1)詳見解析;(2)①詳見解析;②詳見解析.【解析】【分析】(1)本題考查理解題意能力,按照題目所述依次作圖即可.(2)①本題考查線段和最短問題,需要通過垂直平分線的性質(zhì)將所求線段轉(zhuǎn)化為其他等量線段之和,以達到求解目的.②本題考查垂直平分線的判定以及全等三角形的證明,繼而利用角的平分線性質(zhì)即可得出結(jié)論.【詳解】(1)補全圖形,如圖1所示(2)①如圖2,連接BD,P為BD與AE的交點∵等邊△ACD,AE⊥CD∴PC=PD,PC+PB最短等價于PB+PD最短故B,D之間直線最短,點P即為所求.②證明:連接DE,DF.如圖3所示∵△ABC,△ADC是等邊三角形∴AC=AD,∠ACB=∠CAD=60°∵AE⊥CD∴∠CAE=∠CAD=30°∴∠CEA=∠ACB﹣∠CAE=30°∴∠CAE=∠CEA∴CA=CE∴CD垂直平分AE∴DA=DE∴∠DAE=∠DEA∵EF⊥AF,∠EAF=45°∴∠FEA=45°∴∠FEA=∠EAF∴FA=FE,∠FAD=∠FED∴△FAD≌△FED(SAS)∴∠AFD=∠EFD∴點D到AF,EF的距離相等.【點睛】本題第一問作圖極為重要,要求對題意有較深的理解,同時對于垂直平分線以及角平分線的定義要清楚,能通過題目文字所述轉(zhuǎn)化為考點,信息轉(zhuǎn)化能力需要多做題目加以提升.9.(1)證明見解析;(2)證明見解析;(3)當AC=2BD時,對于滿足條件的任意點N,AN=CP始終成立,證明見解析.【解析】【分析】(1)由三角形的內(nèi)角和定理可求∠ACN=∠AMC=135°-∠ACM;(2)過點N作NE⊥AC于E,由“AAS”可證△NEC≌△CDM,可得NE=CD,由三角形面積公式可求解;(3)過點N作NE⊥AC于E,由“SAS”可證△NEA≌△CDP,可得AN=CP.【詳解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM.∵∠NCM=135°,∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC;(2)過點N作NE⊥AC于E,∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,∴△NEC≌△CDM(AAS),∴NE=CD,CE=DM;∵S1AC?NE,S2AB?CD,∴;(3)當AC=2BD時,對于滿足條件的任意點N,AN=CP始終成立,理由如下:過點N作NE⊥AC于E,由(2)可得NE=CD,CE=DM.∵AC=2BD,BP=BM,CE=DM,∴AC﹣CE=BD+BD﹣DM,∴AE=BD+BP=DP.∵NE=CD,∠NEA=∠CDP=90°,AE=DP,∴△NEA≌△CDP(SAS),∴AN=PC.【點睛】本題三角形綜合題,考查了全等三角形的判定和性質(zhì),三角形內(nèi)角和定理,三角形面積公式等知識,添加恰當輔助線構(gòu)造全等三角形是本題的關(guān)鍵.10.(1)∠OAD=∠ODA=45°;(2)證明見解析;(3)18.【解析】【分析】(1)由等腰直角三角形的性質(zhì)可求解;(2)通過“ASA”可證得△ODB≌△OAP,進而可得BO=OP;(3)過點P作PF⊥x軸于點F,延長FP交BC于N,過點A作AQ⊥BC于Q,由“AAS”可證△OBM≌△OPF,可得PF=BM=2,OF=OM=4,由面積和差關(guān)系可求四邊形BOPC的面積.【詳解】(1)∵點A的坐為(2,0),點D的坐標為(0,-2),∴OA=OD,∵∠AOD=90°,∴∠OAD=∠ODA=45°;(2)∵∠BOE=∠AOD=90°,∴∠BOD=∠AOP,∵∠ABC=∠ACB=45°,∴∠BAC=90°,AB=AC,∵∠OAD=∠ODA=45°,∴∠ODB=135°=∠OAP,在△ODB和△OAP中,,∴△ODB≌△OAP(ASA),∴BO=OP;(3)如圖,過點P作PF⊥x軸于點F,延長FP交BC于N,過點A作AQ⊥BC于Q,∵BC∥x軸,AQ⊥BC,PF⊥x軸,∴AQ⊥x軸,PN⊥BC,∠AOM=∠BMO=90°,∴點Q橫坐標為2,∵∠BAC=90°,AB=AC,AQ⊥BC,∴BQ=QC,∵點B的標為(-2,-4),∴BM=2,OM=4,BQ=4=QC,∵PF⊥x軸,∴∠OFP=∠OMB=90°,在△OBM和△OPF中,,∴△OBM≌△OPF(AAS),∴PF=BM=2,OF=OM=4,∵BC∥x軸,AQ⊥x軸,NF⊥x軸,∴OM=AQ=FN=4,∴PN=2,∵∠PNC=90°,∠ACB=45°,∴∠ACB=∠CPN=45°,∴CN=PN=2,∵四邊形BOPC的面積=S△OBM+S梯形OMNP+S△PNC,∴四邊形BOPC的面積=×2×4+×4×(2+4)+×2×2=18.【點睛】本題考查了全等三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)、三角形的面積公式等知識,難度較大,添加恰當?shù)妮o助線構(gòu)造全等三角形是解本題的關(guān)鍵.11.(1)60°;(2)15°;(3)30°或15°【解析】【分析】(1)利用兩直線平行,同旁內(nèi)角互補,得出,即可得出結(jié)論;(2)先利用三角形的內(nèi)角和定理求出,即可得出結(jié)論;(3)分和兩種情況求解即可得出結(jié)論.【詳解】解:(1),,,,,;(2)由(1)知,,,,,;(3)當時,如圖3,由(1)知,,;當時,如圖4,,點,重合,,,由(1)知,,,即當以、、為頂點的三角形是直角三角形時,度數(shù)為或.【點睛】此題是三角形綜合題,主要考查了平行線的性質(zhì),三角形的內(nèi)角和定理,角的和差的計算,求出是解本題的關(guān)鍵.12.(1);(2),證明見解析;(3)【解析】【分析】(1)過作KG∥AB,交于,證出∥KG,得到,,根據(jù)角平分線的性質(zhì)及平行線的性質(zhì)得到,即可得到答案;(2)根據(jù)角平分線的性質(zhì)得到,,根據(jù)求出,根據(jù)求出答案;(3)根據(jù)(2)得到規(guī)律解答即可.【詳解】(1)過作KG∥AB,交于,∵,∴∥KG,,,,分別為與的平分線,,,∵,,,,則;(2),理由為:,的平分線相交于點,,,,即,,,,;(3)由(2)知;同理可得=,∴.【點睛】此題考查平行線的性質(zhì):兩直線平行,內(nèi)錯角相等;平行公理的推論:平行于同一直線的兩直線平行;角平分線的性質(zhì);(3)是難點,注意總結(jié)前兩問的做題思路得到規(guī)律進行解答.13.(1)1,2,3;(2)答案見解析;(3)答案見解析;(4)答案見解析.【解析】【分析】(1)根據(jù)等腰三角形的性質(zhì)、矩形的性質(zhì)以及等邊三角形的性質(zhì)進行判斷即可;(2)中圖1-2和圖1-3都可以看作由圖1-1修改得到的,在圖1-4和圖1-5中,分別仿照類似的修改方式進行畫圖即可;(3)長方形具有兩條對稱軸,在長方形的右側(cè)補出與左側(cè)一樣的圖形,即可構(gòu)造出一個恰好有2條對稱軸的凸六邊形;(4)在等邊三角形的基礎(chǔ)上加以修改,即可得到恰好有3條對稱軸的凸六邊形.【詳解】解:(1)非等邊的等腰三角形有1條對稱軸,非正方形的長方形有2條對稱軸,等邊三角形有3條對稱軸,故答案為1,2,3;(2)恰好有1條對稱軸的凸五邊形如圖中所示.(3)恰好有2條對稱軸的凸六邊形如圖所示.(4)恰好有3條對稱軸的凸六邊形如圖所示.14.(1)見解析;(2)【解析】【分析】(1)根據(jù)聰聰提供的輔助線作法進行證明,先由平行線的性質(zhì)得:,,再證明,可得結(jié)論;(2)根據(jù)平行線的性質(zhì)和三角形的外角性質(zhì)可得結(jié)論.【詳解】解:(1)證明:如圖2,過作,交于,,,,,,,,;(2)解:,理由如下:如圖3,,,,,,∴.【點睛】本題主要考查了平行線的性質(zhì)和判定以及三角形外角性質(zhì)的運用,熟練掌握平行線的性質(zhì)和判定是解決問題的關(guān)鍵.15.(1)AE//BF;QE=QF;(2)QE=QF,證明見解析;(3)結(jié)論成立,證明見解析.【解析】【分析】(1)根據(jù)AAS得到,得到、QE=QF,根據(jù)內(nèi)錯角相等兩直線平行,得到AE//BF;(2)延長EQ交BF于D,根據(jù)AAS判斷得出,因此,根據(jù)直角三角形斜邊的中線等于斜邊的一半即可證明;(3)延長EQ交FB的延長于D,根據(jù)AAS判斷得出,因此,根據(jù)直角三角形斜邊的中線等于斜邊的一半即可證明.【詳解】(1)AE//BF;QE=QF(2)QE=QF證明:延長EQ交BF于D,,(3)當點P在線段BA延長線上時,此時(2)中結(jié)論成立證明:延長EQ交FB的延長于D因為AE//BF所以EQ=QF【點睛】本題考查了三角形全等的判定方法:AAS,平行線的性質(zhì),根據(jù)P點位置不同,畫出正確的圖形,找到AAS的條件是解決本題的關(guān)鍵.16.(1)30,100;(2),見解析;(3)可以,或【解析】【分析】(1)根據(jù)平角的定義,可求出∠EDC的度數(shù),根據(jù)三角形內(nèi)和定理,即可求出∠DEC;(2)當AB=DC時,利用AAS可證明ΔABD?ΔDCE,即可得出AB=DC=3;(3)假設(shè)ΔADE是等腰三角形,分為三種情況討論:①當DA=DE時,求出∠DAE=∠DEA=70°,求出∠BAC,根據(jù)三角形的內(nèi)角和定理求出∠BAD,根據(jù)三角形的內(nèi)角和定理求出∠BDA即可;②當AD=AE時,∠ADE=∠AED=40°,根據(jù)∠AED>∠C,得出此時不符合;③當EA=ED時,求出∠DAC,求出∠BAD,根據(jù)三角形的內(nèi)角和定理求出∠ADB.【詳解】(1)在△BAD中,∵∠B=50°,∠BDA=100°,∴,.故答案為,.(2)當時,,理由如下:∵,∴∵,∴∵∴在和中∴(3)可以,理由如下:∵,∴分三種情況討論:①當時,∵,∴∴∵∴②當時,∵∴又∵∴∴點D與點B重合,不合題意.③當時,∴∵∴綜上所述,當?shù)亩葦?shù)為或時,是等腰三角形.【點睛】本題考查的是等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、三角形外角的性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理、靈活運用分情況討論思想是解題的關(guān)鍵.17.(1)∠BDC=90°+;(2)∠BFC=;(3)∠BMC=90°+.【解析】【分析】(1)由三角形內(nèi)角和可求∠ABC+∠ACB=180°﹣α,由角平分線的性質(zhì)可求∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,由三角形的內(nèi)角和定理可求解;(2)由角平分線的性質(zhì)可得∠FBC=∠ABC,∠FCE=∠ACE,由三角形的外角性質(zhì)可求解;(3)由折疊的性質(zhì)可得∠G=∠BFC=,方法同(1)可求∠BMC=90°+,即可求解.【詳解】解:(1)∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵BD平分∠ABC,CD平分∠ACB,∴∠DBC=∠ABC,∠BCD=∠ACB,∴∠DBC+∠BCD=(∠ABC+∠ACB)=90°﹣,∴∠BDC=180°﹣(∠DBC+∠BCD)=90°+;(2)∵∠ABC的平分線與∠ACE的平分線交于點F,∴∠FBC=∠ABC,∠FCE=∠ACE,∵∠ACE=∠A+∠ABC,∠FCE=∠BFC+∠FBC,∴∠BFC=∠A=;(3)∵∠GBC的平分線與∠GCB的平分線交于點M,∴方法同(1)可得∠BMC=90°+,∵將△FBC以直線BC為對稱軸翻折得到△GBC,∴∠G=∠BFC=,∴∠BMC=90°+.【點睛】此題考查三角形的內(nèi)角和定理,三角形的外角等于與它不相鄰的兩個內(nèi)角的和,角平分線的性質(zhì)定理,折疊的性質(zhì).18.(1)40°25°;(2)(或)(3)=【解析】【分析】(1)先根據(jù)兩角平分線寫出對應(yīng)的等式關(guān)系,再分別寫出兩個三角形內(nèi)角和的等式關(guān)系,最后聯(lián)立兩等式化解,將的角度帶入即可求解;(2)由(1)可得,即可求解;(3)在與的平分線相交于點,可知,又因為,兩直線平行內(nèi)錯角相等,得出,再根據(jù)三角形一外角等于不相鄰的兩個內(nèi)角的和,得出,再由四邊形的內(nèi)角和定理得出,最后在中:,代入整理即可得出結(jié)論.【詳解】解:(1)由題可知:BE為的角平分線,CE為的角平分線,=2=2,=2,,三角形內(nèi)角和等于,在中:,即:,①,在中:,即:,②,綜上所述聯(lián)立①②,由①-②×2可得:,,,,當,則;當,則;故答案為,;(2)由(1)知:(或);(3)∵與的平分線相交于點,∴,,又∵,∴(兩直線平行,內(nèi)錯角相等),∵是的一個外角,∴(三角形一外角等于不相鄰的兩個內(nèi)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論