(完整版)深圳市七年級下冊期末壓軸題數學試卷及答案-(一)培優(yōu)試卷_第1頁
(完整版)深圳市七年級下冊期末壓軸題數學試卷及答案-(一)培優(yōu)試卷_第2頁
(完整版)深圳市七年級下冊期末壓軸題數學試卷及答案-(一)培優(yōu)試卷_第3頁
(完整版)深圳市七年級下冊期末壓軸題數學試卷及答案-(一)培優(yōu)試卷_第4頁
(完整版)深圳市七年級下冊期末壓軸題數學試卷及答案-(一)培優(yōu)試卷_第5頁
已閱讀5頁,還剩42頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

一、解答題1.如圖,在長方形ABCD中,AB=8cm,BC=6cm,點E是CD邊上的一點,且DE=2cm,動點P從A點出發(fā),以2cm/s的速度沿A→B→C→E運動,最終到達點E.設點P運動的時間為t秒.(1)請以A點為原點,AB所在直線為x軸,1cm為單位長度,建立一個平面直角坐標系,并用t表示出點P在不同線段上的坐標.(2)在(1)相同條件得到的結論下,是否存在P點使△APE的面積等于20cm2時,若存在,請求出P點坐標;若不存在,請說明理由.2.直線AB∥CD,點P為平面內一點,連接AP,CP.(1)如圖①,點P在直線AB,CD之間,當∠BAP=60°,∠DCP=20°時,求∠APC的度數;(2)如圖②,點P在直線AB,CD之間,∠BAP與∠DCP的角平分線相交于K,寫出∠AKC與∠APC之間的數量關系,并說明理由;(3)如圖③,點P在直線CD下方,當∠BAK=∠BAP,∠DCK=∠DCP時,寫出∠AKC與∠APC之間的數量關系,并說明理由.3.綜合與實踐背景閱讀:在同一平面內,兩條不重合的直線的位置關系有相交、平行,若兩條不重合的直線只有一個公共點,我們就說這兩條直線相交,若兩條直線不相交,我們就說這兩條直線互相平行兩條直線的位置關系的性質和判定是幾何的重要知識,是初中階段幾何合情推理的基礎.已知:AM∥CN,點B為平面內一點,AB⊥BC于B.問題解決:(1)如圖1,直接寫出∠A和∠C之間的數量關系;(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,則∠EBC=.4.已知直線,點P為直線、所確定的平面內的一點.(1)如圖1,直接寫出、、之間的數量關系;(2)如圖2,寫出、、之間的數量關系,并證明;(3)如圖3,點E在射線上,過點E作,作,點G在直線上,作的平分線交于點H,若,,求的度數.5.汛期即將來臨,防汛指揮部在某水域一危險地帶兩岸各安置了一探照燈,便于夜間查看河水及兩岸河堤的情況.如圖1,燈射出的光束自順時針旋轉至便立即回轉,燈射出的光束自順時針旋轉至便立即回轉,兩燈不停交叉照射巡視.若燈射出的光束轉動的速度是/秒,燈射出的光束轉動的速度是/秒,且、滿足.假定這一帶水域兩岸河堤是平行的,即,且.(1)求、的值;(2)如圖2,兩燈同時轉動,在燈射出的光束到達之前,若兩燈射出的光束交于點,過作交于點,若,求的度數;(3)若燈射線先轉動30秒,燈射出的光束才開始轉動,在燈射出的光束到達之前,燈轉動幾秒,兩燈的光束互相平行?6.已知AB//CD.(1)如圖1,E為AB,CD之間一點,連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D;(2)如圖,連接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直線交于點F.①如圖2,當點B在點A的左側時,若∠ABC=50°,∠ADC=60°,求∠BFD的度數.②如圖3,當點B在點A的右側時,設∠ABC=α,∠ADC=β,請你求出∠BFD的度數.(用含有α,β的式子表示)7.先閱讀下面的材料,再解答后面的各題:現代社會會保密要求越來越高,密碼正在成為人們生活的一部分,有一種密碼的明文(真實文)按計算機鍵盤字母排列分解,其中這26個字母依次對應這26個自然數(見下表).QWERTYUIOPASD12345678910111213FGHJKLZXCVBNM14151617181920212223242526給出一個變換公式:將明文轉成密文,如,即變?yōu)椋?,即A變?yōu)镾.將密文轉成成明文,如,即變?yōu)椋?,即D變?yōu)镕.(1)按上述方法將明文譯為密文.(2)若按上方法將明文譯成的密文為,請找出它的明文.8.探究與應用:觀察下列各式:1+3=21+3+5=21+3+5+7=21+3+5+7+9=2……問題:(1)在橫線上填上適當的數;(2)寫出一個能反映此計算一般規(guī)律的式子;(3)根據規(guī)律計算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(結果用科學記數法表示)9.(閱讀材料)數學家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:“39”.鄰座的乘客十分驚奇,忙間其中計算的奧妙.你知道怎樣迅速準確的計算出結果嗎?請你按下面的步驟試一試:第一步:∵,,,∴.∴能確定59319的立方根是個兩位數.第二步:∵59319的個位數是9,∴能確定59319的立方根的個位數是9.第三步:如果劃去59319后面的三位319得到數59,而,則,可得,由此能確定59319的立方根的十位數是3,因此59319的立方根是39.(解答問題)根據上面材料,解答下面的問題(1)求110592的立方根,寫出步驟.(2)填空:__________.10.觀察下列各式:(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1……(1)根據以上規(guī)律,則(x-1)(x6+x5+x4+x3+x2+x+1)=__________________.(2)你能否由此歸納出一般性規(guī)律(x-1)(xn+xn-1+xn-2+…+x+1)=____________.(3)根據以上規(guī)律求1+3+32+…+349+350的結果.11.觀察下面的變形規(guī)律:;;;….解答下面的問題:(1)仿照上面的格式請寫出=;(2)若n為正整數,請你猜想=;(3)基礎應用:計算:.(4)拓展應用1:解方程:=2016(5)拓展應用2:計算:.12.閱讀下面的文字,解答問題:大家知道是無理數,而無理數是無限不循環(huán)小數,因此的小數部分我們不可能全部寫出來,而<2于是可用來表示的小數部分.請解答下列問題:(1)的整數部分是_______,小數部分是_________;(2)如果的小數部分為的整數部分為求的值;(3)已知:其中是整數,且求的平方根.13.如圖1,在平面直角坐標系中,A(a,0)是x軸正半軸上一點,C是第四象限內一點,CB⊥y軸交y軸負半軸于B(0,b),且|a﹣3|+(b+4)2=0,S四邊形AOBC=16.(1)求點C的坐標.(2)如圖2,設D為線段OB上一動點,當AD⊥AC時,∠ODA的角平分線與∠CAE的角平分線的反向延長線交于點P,求∠APD的度數;(點E在x軸的正半軸).(3)如圖3,當點D在線段OB上運動時,作DM⊥AD交BC于M點,∠BMD、∠DAO的平分線交于N點,則點D在運動過程中,∠N的大小是否會發(fā)生變化?若不變化,求出其值;若變化,請說明理由.14.如圖1,//,點、分別在、上,點在直線、之間,且.(1)求的值;(2)如圖2,直線分別交、的角平分線于點、,直接寫出的值;(3)如圖3,在內,;在內,,直線分別交、分別于點、,且,直接寫出的值.15.在平面直角坐標系中,已知長方形,點,.(1)如圖,有一動點在第二象限的角平分線上,若,求的度數;(2)若把長方形向上平移,得到長方形.①在運動過程中,求的面積與的面積之間的數量關系;②若,求的面積與的面積之比.16.在平面直角坐標系xOy中,已知點M(a,b).如果存在點N(a′,b′),滿足a′=|a+b|,b′=|a﹣b|,則稱點N為點M的“控變點”.(1)點A(﹣1,2)的“控變點”B的坐標為;(2)已知點C(m,﹣1)的“控變點”D的坐標為(4,n),求m,n的值;(3)長方形EFGH的頂點坐標分別為(1,1),(5,1),(5,4),(1,4).如果點P(x,﹣2x)的“控變點”Q在長方形EFGH的內部,直接寫出x的取值范圍.17.如圖1,在平面直角坐標系中,,且滿足,過作軸于.(1)求的面積.(2)若過作交軸于,且分別平分,如圖2,求的度數.(3)在軸上存在點使得和的面積相等,請直接寫出點坐標.18.在平面直角坐標系中描出下列兩組點,分別將每組里的點用線段依次連接起來.第一組:、;第二組:、.(1)線段與線段的位置關系是;(2)在(1)的條件下,線段、分別與軸交于點,.若點為射線上一動點(不與點,重合).①當點在線段上運動時,連接、,補全圖形,用等式表示、、之間的數量關系,并證明.②當與面積相等時,求點的坐標.19.五一節(jié)前,某商店擬購進A、B兩種品牌的電風扇進行銷售,已知購進3臺A種品牌電風扇所需費用與購進2臺B種品牌電風扇所需費用相同,購進1臺A種品牌電風扇與2臺B種品牌電風扇共需費用400元.(1)求A、B兩種品牌電風扇每臺的進價分別是多少元?(2)銷售時,該商店將A種品牌電風扇定價為180元/臺,B種品牌電風扇定價為250元/臺,商店擬用1000元購進這兩種風扇(1000元剛好全部用完),為能在銷售完這兩種電風扇后獲得最大的利潤,該商店應采用哪種進貨方案?20.兩個兩位數的和是68,在較大的兩位數的右邊接著寫較小的兩位數,得到一個四位數;在較大的兩位數的左邊寫上較小的兩位數,也得到一個四位數.已知前一個四位數比后一個四位數大990.若設較大的兩位數為x,較小的兩位數為y,回答下列問題:(1)可得到下列哪一個方程組?A.B.C.D.(2)解所確定的方程組,求這兩個兩位數.21.李師傅要給-塊長9米,寬7米的長方形地面鋪瓷磚.如圖,現有A和B兩種款式的瓷磚,且A款正方形瓷磚的邊長與B款長方形瓷磚的長相等,B款瓷磚的長大于寬.已知一塊A款瓷磚和-塊B款瓷磚的價格和為140元;3塊A款瓷磚價格和4塊B款瓷磚價格相等.請回答以下問題:(1)分別求出每款瓷磚的單價.(2)若李師傅買兩種瓷磚共花了1000元,且A款瓷磚的數量比B款多,則兩種瓷磚各買了多少塊?(3)李師傅打算按如下設計圖的規(guī)律進行鋪瓷磚.若A款瓷磚的用量比B款瓷磚的2倍少14塊,且恰好鋪滿地面,則B款瓷磚的長和寬分別為_米(直接寫出答案).22.已知AM∥CN,點B為平面內一點,AB⊥BC于B.(1)如圖1,過點B作BD⊥AM于點D,∠BAD與∠C有何數量關系,并說明理由;(2)如圖2,在(1)問的條件下,點E,F在DM上,連接BE,BF,CF,若BF平分∠DBC,BE平分∠ABD,∠FCB+∠NCF=180°,∠BFC=5∠DBE,求∠ABE的度數.23.學校計劃為“我和我的祖國”演講比賽購買獎品.已知購買3個A獎品和2個B獎品共需120元;購買5個A獎品和4個B獎品共需210元.(1)求A,B兩種獎品的單價;(2)學校準備購買A,B兩種獎品共30個,且A獎品的數量不少于B獎品數量的.請設計出最省錢的購買方案,并說明理由.24.某治污公司決定購買10臺污水處理設備.現有甲、乙兩種型號的設備可供選擇,其中每臺的價格與月處理污水量如下表:甲型乙型價格(萬元/臺)xy處理污水量(噸/月)300260經調查:購買一臺甲型設備比購買一臺乙型設備多2萬元,購買3臺甲型設備比購買4臺乙型設備少2萬元.(1)求x,y的值;(2)如果治污公司購買污水處理設備的資金不超過91萬元,求該治污公司有哪幾種購買方案;(3)在(2)的條件下,如果月處理污水量不低于2750噸,為了節(jié)約資金,請為該公司設計一種最省錢的購買方案.25.若任意一個代數式,在給定的范圍內求得的最大值和最小值恰好也在該范圍內,則稱這個代數式是這個范圍的“湘一代數式”.例如:關于x的代數式,當1x1時,代數式在x1時有最大值,最大值為1;在x0時有最小值,最小值為0,此時最值1,0均在1x1這個范圍內,則稱代數式是1x1的“湘一代數式”.(1)若關于的代數式,當時,取得的最大值為,最小值為,所以代數式(填“是”或“不是”)的“湘一代數式”.(2)若關于的代數式是的“湘一代數式”,求a的最大值與最小值.(3)若關于的代數式是的“湘一代數式”,求m的取值范圍.26.如圖,正方形ABCD的邊長是2厘米,E為CD的中點,Q為正方形ABCD邊上的一個動點,動點Q以每秒1厘米的速度從A出發(fā)沿運動,最終到達點D,若點Q運動時間為秒.(1)當時,平方厘米;當時,平方厘米;(2)在點Q的運動路線上,當點Q與點E相距的路程不超過厘米時,求的取值范圍;(3)若的面積為平方厘米,直接寫出值.27.某小區(qū)準備新建個停車位,以解決小區(qū)停車難的問題.已知新建個地上停車位和個地下停車位共需萬元:新建個地上停車位和個地下停車位共需萬元,(1)該小區(qū)新建個地上停車位和個地下停車位各需多少萬元?(2)若該小區(qū)新建車位的投資金額超過萬元而不超過萬元,問共有幾種建造方案?(3)對(2)中的幾種建造方案中,哪種方案的投資最少?并求出最少投資金額.28.閱讀材料:關于x,y的二元一次方程ax+by=c有一組整數解,則方程ax+by=c的全部整數解可表示為(t為整數).問題:求方程7x+19y=213的所有正整數解.小明參考閱讀材料,解決該問題如下:解:該方程一組整數解為,則全部整數解可表示為(t為整數).因為解得.因為t為整數,所以t=0或-1.所以該方程的正整數解為和.(1)方程3x-5y=11的全部整數解表示為:(t為整數),則=;(2)請你參考小明的解題方法,求方程2x+3y=24的全部正整數解;(3)方程19x+8y=1908的正整數解有多少組?請直接寫出答案.29.如圖,在平面直角坐標系中,點O為坐標原點,三角形OAB的邊OA、OB分別在x軸正半軸上和y軸正半軸上,A(a,0),a是方程的解,且△OAB的面積為6.(1)求點A、B的坐標;(2)將線段OA沿軸向上平移后得到PQ,點O、A的對應點分別為點P和點Q(點P與點B不重合),設點P的縱坐標為t,△BPQ的面積為S,請用含t的式子表示S;(3)在(2)的條件下,設PQ交線段AB于點K,若PK=,求t的值及△BPQ的面積.30.某生態(tài)柑橘園現有柑橘21噸,計劃租用A,B兩種型號的貨車將柑橘運往外地銷售.已知滿載時,用2輛A型車和3輛B型車一次可運柑橘12噸;用3輛A型車和4輛B型車一次可運柑橘17噸.(1)1輛A型車和1輛B型車滿載時一次分別運柑橘多少噸?(2)若計劃租用A型貨車m輛,B型貨車n輛,一次運完全部柑橘,且每輛車均為滿載.①請幫柑橘園設計租車方案;②若A型車每輛需租金120元/次,B型車每輛需租金100元/次.請選出最省錢的租車方案,并求出最少租車費.【參考答案】***試卷處理標記,請不要刪除一、解答題1.(1)建立直角坐標系見解析,當0<t≤4時,即當點P在線段AB上時,其坐標為:P(2t,0),當4<t≤7時,即當點P在線段BC上時,其坐標為:P(8,2t﹣8),當7<t≤10時,即當點P在線段CE上時,其坐標為:P(22﹣2t,6);(2)存在,當點P的坐標分別為:P(,0)或P(8,4)時,△APE的面積等于.【分析】(1)建立平面直角坐標系,根據點P的運動速度分別求出點P在線段AB,BC,CE上的坐標;(2)根據(1)中得到的點P的坐標以及,分別列出三個方程并解出此時t的值再進行討論.【詳解】(1)正確畫出直角坐標系如下:當0<t≤4時,點P在線段AB上,此時P點的橫坐標為,其縱坐標為0;∴此時P點的坐標為:P(2t,0);同理:當4<t≤7時,點P在線段BC上,此時P點的坐標為:P(8,2t﹣8);當7<t≤10時,點P在線段CE上,此時P點的坐標為:P(22﹣2t,6).(2)存在,①如圖1,當0<t≤4時,點P在線段AB上,,解得:t(s);∴P點的坐標為:P(,0).②如圖2,當4<t≤7時,點P在線段BC上,;∴;解得:t=6(s);∴點P的坐標為:P(8,4).③如圖3,當7<t≤10時,點P在線段CE上,;解得:t(s);∵7,∴t(應舍去),綜上所述:當P點的坐標為:P(,0)或P(8,4)時,△APE的面積等于.【點睛】本題考查了三角形的面積的計算公式,,在本題計算的過程中根據動點的坐標正確地求出三角形的底邊長度和高是解題的關鍵.2.(1)80°;(2)∠AKC=∠APC,理由見解析;(3)∠AKC=∠APC,理由見解析【分析】(1)先過P作PE∥AB,根據平行線的性質即可得到∠APE=∠BAP,∠CPE=∠DCP,再根據∠APC=∠APE+∠CPE=∠BAP+∠DCP進行計算即可;(2)過K作KE∥AB,根據KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,進而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根據角平分線的定義,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,進而得到∠AKC=∠APC;(3)過K作KE∥AB,根據KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,進而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根據已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,進而得到∠BAK﹣∠DCK=∠APC.【詳解】(1)如圖1,過P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=∠APC.理由:如圖2,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP與∠DCP的角平分線相交于點K,∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,∴∠AKC=∠APC;(3)∠AKC=∠APC理由:如圖3,過K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,過P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=∠BAP,∠DCK=∠DCP,∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,∴∠AKC=∠APC.【點睛】本題考查了平行線的性質和角平分線的定義,解題的關鍵是作出平行線構造內錯角相等計算.3.(1);(2)見解析;(3)105°【分析】(1)通過平行線性質和直角三角形內角關系即可求解.(2)過點B作BG∥DM,根據平行線找角的聯系即可求解.(3)利用(2)的結論,結合角平分線性質即可求解.【詳解】解:(1)如圖1,設AM與BC交于點O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案為:∠A+∠C=90°;(2)證明:如圖2,過點B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如圖3,過點B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案為:105°.【點睛】本題考查平行線性質,畫輔助線,找到角的和差倍分關系是求解本題的關鍵.4.(1)∠A+∠C+∠APC=360°;(2)見解析;(3)55°【分析】(1)首先過點P作PQ∥AB,則易得AB∥PQ∥CD,然后由兩直線平行,同旁內角互補,即可證得∠A+∠C+∠APC=360°;(2)作PQ∥AB,易得AB∥PQ∥CD,根據兩直線平行,內錯角相等,即可證得∠APC=∠A+∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,先證∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根據∠PEH=∠PEG-∠GEH可得答案.【詳解】解:(1)∠A+∠C+∠APC=360°如圖1所示,過點P作PQ∥AB,∴∠A+∠APQ=180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如圖2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG-∠GEH=∠FEG-∠BEG=∠BEF=55°.【點睛】此題考查了平行線的性質以及角平分線的定義.此題難度適中,注意掌握輔助線的作法,注意掌握數形結合思想的應用.5.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根據,用含t的式子表示出,根據(2)中給出的條件得出方程式,求出t的值,進而求出的度數;(3)根據燈B的要求,t<150,在這個時間段內A可以轉3次,分情況討論.【詳解】解:(1).又,.,;(2)設燈轉動時間為秒,如圖,作,而,,,,,,(3)設燈轉動秒,兩燈的光束互相平行.依題意得①當時,兩河岸平行,所以兩光線平行,所以所以,即:,解得;②當時,兩光束平行,所以兩河岸平行,所以所以,,解得;③當時,圖大概如①所示,解得(不合題意)綜上所述,當秒或82.5秒時,兩燈的光束互相平行.【點睛】這道題考察的是平行線的性質和一元一次方程的應用.根據平行線的性質找到對應角列出方程是解題的關鍵.6.(1)見解析;(2)55°;(3)【分析】(1)根據平行線的判定定理與性質定理解答即可;(2)①如圖2,過點作,當點在點的左側時,根據,,根據平行線的性質及角平分線的定義即可求的度數;②如圖3,過點作,當點在點的右側時,,,根據平行線的性質及角平分線的定義即可求出的度數.【詳解】解:(1)如圖1,過點作,則有,,,,;(2)①如圖2,過點作,有.,...即,平分,平分,,,.答:的度數為;②如圖3,過點作,有.,,...即,平分,平分,,,.答:的度數為.【點睛】本題考查了平行線的判定與性質,解決本題的關鍵是熟練掌握平行線的判定與性質.7.(1)N,E,T密文為M,Q,P;(2)密文D,W,N的明文為F,Y,C.【分析】(1)

由圖表找出N,E,T對應的自然數,再根據變換公式變成密文.(2)由圖表找出N=M,Q,P對應的自然數,再根據變換.公式變成明文.【詳解】解:(1)將明文NET轉換成密文:即N,E,T密文為M,Q,P;(2)將密文D,W,N轉換成明文:即密文D,W,N的明文為F,Y,C.【點睛】本題考查有理數的混合運算,此題較復雜,解答本題的關鍵是由圖表中找到對應的數或字母,正確運用轉換公式進行轉換.8.(1)2、3、4、5;(2)第n個等式為1+3+5+7+…+(2n+1)=n2;(3)﹣1.008016×106.【分析】(1)根據從1開始連續(xù)n各奇數的和等于奇數的個數的平方即可得到.(2)根據規(guī)律寫出即可.(3)先提取符號,再用規(guī)律解題.【詳解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案為:2、3、4、5;(2)第n個等式為1+3+5+7+…+(2n+1)=(3)原式=﹣(1+3+5+7+9+…+2019)=﹣10102=﹣1.0201×106.【點睛】本題考查數字變化規(guī)律,解題的關鍵是找到第一個的規(guī)律,然后加以運用即可.9.(1)48;(2)28【分析】(1)根據題中所給的分析方法先求出這幾個數的立方根都是兩位數,然后根據第二和第三步求出個位數和十位數即可.(2)根據題中所給的分析方法先求出這幾個數的立方根都是兩位數,然后根據第二和第三步求出個位數和十位數即可.【詳解】解:(1)第一步:,,,,能確定110592的立方根是個兩位數.第二步:的個位數是2,,能確定110592的立方根的個位數是8.第三步:如果劃去110592后面的三位592得到數110,而,則,可得,由此能確定110592的立方根的十位數是4,因此110592的立方根是48;(2)第一步:,,,,能確定21952的立方根是個兩位數.第二步:的個位數是2,,能確定21952的立方根的個位數是8.第三步:如果劃去21952后面的三位952得到數21,而,則,可得,由此能確定21952的立方根的十位數是2,因此21952的立方根是28.即,故答案為:28.【點睛】本題主要考查了數的立方,理解一個數的立方的個位數就是這個數的個位數的立方的個位數是解題的關鍵,有一定難度.10.(1)x7-1;(2)xn+1-1;(3).【分析】(1)仿照已知等式寫出答案即可;(2)先歸納總結出規(guī)律,然后按規(guī)律解答即可;(3)先利用得出規(guī)律的變形,然后利用規(guī)律解答即可.【詳解】解:(1)根據題意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;(2)根據題意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=×(3-1)(1+3+32+···+349+350)=×(x50+1-1)=故答案為:(1)x7-1;(2)xn+1-1;(3).【點睛】本題考查了平方差公式以及規(guī)律型問題,弄清題意、發(fā)現數字的變化規(guī)律是解答本題的關鍵.11.(1);(2);(3);(4)x=2017;(5)【分析】(1)類比題目中方法解答即可;(2)根據題目中所給的算式總結出規(guī)律,解答即可;(3)利用總結的規(guī)律把每個式子拆分后合并即可解答;(4)方程左邊提取x后利用(3)的方法計算后,再解方程即可;(5)類比(3)的方法,拆項計算即可.【詳解】(1)故答案為:;(2)=故答案為:;(3)計算:==1﹣=;(4)=2016=2016,x=2017;(5).=+()+()+…+().=(1﹣).=.【點睛】本題是數字規(guī)律探究題,解決問題基本思路是正確找出規(guī)律,根據所得的規(guī)律解決問題.12.(1)4,-4;(2)1;(2)±12.【分析】(1)先估算出的范圍,即可得出答案;(2)先估算出、的范圍,求出a、b的值,再代入求出即可;(3)先估算出的范圍,求出x、y的值,再代入求出即可.【詳解】解:(1)∵4<<5,∴的整數部分是4,小數部分是-4,故答案為4,-4;(2)∵2<<3,∴a=-2,∵3<<4,∴b=3,∴a+b-=-2+3-=1;(3)∵100<110<121,∴10<<11,∴110<100+<111,∵100+=x+y,其中x是整數,且0<y<1,∴x=110,y=100+-110=-10,∴x++24-y=110++24-+10=144,x++24-y的平方根是±12.【點睛】本題考查了估算無理數的大小,能估算出、、、的范圍是解此題的關鍵.13.(1)C(5,﹣4);(2)90°;(3)見解析.【詳解】分析:(1)利用非負數的和為零,各項分別為零,求出a,b即可;(2)用同角的余角相等和角平分線的意義即可;(3)利用角平分線的意義和互余兩角的關系簡單計算證明即可.詳解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四邊形AOBC=16.∴0.5(OA+BC)×OB=16,∴0.5(3+BC)×4=16,∴BC=5,∵C是第四象限一點,CB⊥y軸,∴C(5,﹣4);(2)如圖,延長CA,∵AF是∠CAE的角平分線,∴∠CAF=0.5∠CAE,∵∠CAE=∠OAG,∴∠CAF=0.5∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=0.5∠ADO,∵DP是∠ODA的角平分線,∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不變,∠ANM=45°理由:如圖,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分線,∴∠DAN=0.5∠DAO=0.5∠BDM,∵CB⊥y軸,∴∠BDM+∠BMD=90°,∴∠DAN=0.5(90°﹣∠BMD),∵MN是∠BMD的角平分線,∴∠DMN=0.5∠BMD,∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D點在運動過程中,∠N的大小不變,求出其值為45°點睛:此題是四邊形綜合題,主要考查了非負數的性質,四邊形面積的計算方法,角平分線的意義,解本題的關鍵是用整體的思想解決問題,也是本題的難點.14.(1);(2)的值為40°;(3).【分析】(1)過點O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質可求解;(2)過點M作MK∥AB,過點N作NH∥CD,由角平分線的定義可設∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,進而求解;(3)設直線FK與EG交于點H,FK與AB交于點K,根據平行線的性質即三角形外角的性質及,可得,結合,可得即可得關于n的方程,計算可求解n值.【詳解】證明:過點O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:過點M作MK∥AB,過點N作NH∥CD,∵EM平分∠BEO,FN平分∠CFO,設∵∴∴x-y=40°,∵MK∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,的值為40°;(3)如圖,設直線FK與EG交于點H,FK與AB交于點K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO內,∴,∵∴∴即∴解得.經檢驗,符合題意,故答案為:.【點睛】本題主要考查平行線的性質,角平分線的定義,靈活運用平行線的性質是解題的關鍵.15.(1)55°或35°;(2)①;②.【解析】【分析】(1)分兩種情況:①在Rt△FEC中,求出∠FEC=90°-10°=80°,然后根據點在第二象限的角平分線上,得出∠POE=45°,對頂角相等,即可得出∠CPO=180°-80°-45°=55°;②由已知條件,得出∠CEO=45°,又根據∠CEO=∠CPE+∠PCB,得出∠CPO;(2)①首先設長方形向上平移個單位長,得到長方形,然后列出和的面積,即可得出兩者的數量關系;②首先根據已知條件判定四邊形是平行四邊形,經過等量轉化,即可得出和的面積,進而得出其面積之比.【詳解】(1)分兩種情況:①令PC交x軸于點E,延長CB至x軸,交于點F,如圖所示:由已知得,,∠CFE=90°∴∠FEC=90°-10°=80°,又∵點在第二象限的角平分線上,∴∠POE=45°又∵∠FEC=∠PEO=80°∴∠CPO=180°-80°-45°=55°②延長CB,交直線l于點E,由已知得,,∵點在第二象限的角平分線上,∴∠CEO=45°∴∠CEO=∠CPE+∠PCB∴∠CPO=45°-10°=35°.故答案為55°或35°.(2)如圖,①設長方形向上平移個單位長,得到長方形∴②∵長方形,∴∵,令交于E,則四邊形是平行四邊形,∴∴又∵由①得知,∴∴.【點睛】此題主要考查等量轉換和平行四邊形的判定以及性質,熟練掌握,即可解題.16.(1);(2)或;(3)或.【分析】(1)根據“控變點”的定義、絕對值運算法則即可得;(2)根據“控變點”的定義、絕對值運算建立方程,解絕對值方程即可得;(3)先根據“控變點”的定義求出點的坐標,再根據“點在長方形的內部”建立不等式組,解不等式組、化簡絕對值即可得.【詳解】解:(1),,的“控變點”的坐標為,故答案為:;(2)由題意得:,解得或,即或;(3)在平面直角坐標系中,畫出長方形如下所示:由題意得:,即,要使點在長方形的內部,則,解得,即或.【點睛】本題考查了坐標與圖形、絕對值運算、一元一次不等式組的應用,掌握理解“控變點”的定義是解題關鍵.17.(1)4;(2);(2)或.【分析】(1)根據非負數的性質易得,,然后根據三角形面積公式計算;(2)過作,根據平行線性質得,且,,所以;然后把代入計算即可;(3)分類討論:設,當在軸正半軸上時,過作軸,軸,軸,利用可得到關于的方程,再解方程求出;當在軸負半軸上時,運用同樣方法可計算出.【詳解】解:(1),,,,,,,,的面積;(2)解:軸,,,又∵,∴,過作,如圖①,,,,,分別平分,,即:,,;(3)或.解:①當在軸正半軸上時,如圖②,設,過作軸,軸,軸,,,解得,②當在軸負半軸上時,如圖③,解得,綜上所述:或.【點睛】本題考查了平行線的判定與性質:兩直線平行,內錯角相等.也考查了非負數的性質、坐標與圖形性質以及三角形面積公式.構造矩形求三角形面積是解題關鍵.18.(1)AC∥DE;(2)①∠CAM+∠MDE=∠AMD,證明見解析;②點M的坐標為(0,)或(0,).【分析】(1)根據兩點的縱坐標相等,連線平行x軸進行判斷即可;(2)①過點M作MN∥AC,運用平行線的判定和性質即可;②設M(0,m),分兩種情況:(i)當點M在線段OB上時,(ii)當點M在線段OB的延長線上時,分別運用三角形面積公式進行計算即可.【詳解】解:(1)∵A(?3,3)、C(4,3),∴AC∥x軸,∵D(?2,?1)、E(2,?1),∴DE∥x軸,∴AC∥DE;(2)①如圖,∠CAM+∠MDE=∠AMD.理由如下:過點M作MN∥AC,∵MN∥AC(作圖),∴∠CAM=∠AMN(兩直線平行,內錯角相等),∵AC∥DE(已知),∴MN∥DE(平行公理推論),∴∠MDE=∠NMD(兩直線平行,內錯角相等),∴∠CAM+∠MDE=∠AMN+∠NMD=∠AMD(等量代換).②由題意,得:AC=7,DE=4,設M(0,m),(i)當點M在線段OB上時,BM=3?m,FM=m+1,∴S△ACM=AC?BM=×7×(3?m)=,S△DEM=DE?FM=×4×(m+1)=2m+2,∵S△ACM=S△DEM,∴=2m+2,解得:m=,∴M(0,);(ii)當點M在線段OB的延長線上時,BM=m?3,FM=m+1,∴S△ACM=AC?BM=×7×(m?3)=,S△DEM=DE?FM=×4×(m+1)=2m+2,∵S△ACM=S△DEM,∴=2m+2,解得:m=,∴M(0,);綜上所述,點M的坐標為(0,)或(0,).【點睛】本題考查了三角形面積,平行坐標軸的直線上的點的坐標的特征,平行線的判定和性質等,解題關鍵是運用數形結合思想和分類討論思想.19.(1)A、B兩種品牌電風扇每臺的進價分別是100元、150元;(2)為能在銷售完這兩種電風扇后獲得最大的利潤,該商店應采用購進A種品牌的電風扇7臺,購進B種品牌的電風扇2臺.【分析】(1)設A種品牌電風扇每臺進價元,B種品牌電風扇每臺進價元,根據題意即可列出關于x、y的二元一次方程組,解出x、y即可.(2)設購進A品牌電風扇臺,B品牌電風扇臺,根據題意可列等式,由a和b都為整數即可求出a和b的值的幾種可能,然后分別算出每一種情況的利潤進行比較即可.【詳解】(1)設A、B兩種品牌電風扇每臺的進價分別是x元、y元,由題意得:,解得:,答:A、B兩種品牌電風扇每臺的進價分別是100元、150元;(2)設購進A種品牌的電風扇a臺,購進B種品牌的電風扇b臺,由題意得:100a+150b=1000,其正整數解為:或或,當a=1,b=6時,利潤=80×1+100×6=680(元),當a=4,b=4時,利潤=80×4+100×4=720(元),當a=7,b=2時,利潤=80×7+100×2=760(元),∵680<720<760,∴當a=7,b=2時,利潤最大,答:為能在銷售完這兩種電風扇后獲得最大的利潤,該商店應采用購進A種品牌的電風扇7臺,購進B種品牌的電風扇2臺.【點睛】本題主要考查了二元一次方程組的實際應用,根據題意找出等量關系列出等式是解答本題的關鍵.20.(1)C;(2)39和29【分析】(1)首先設較大的兩位數為,較小的兩位數為,根據題意可得等量關系:①兩個兩位數的和為68,②比大990,根據等量關系列出方程組;(2)利用加減消元法解方程組即可.【詳解】解:(1)解:設較大的兩位數為,較小的兩位數為,根據題意,得故選:C;(2)化簡得,①+②,得,即.①-②,得,即.所以這兩個數分別是39和29.【點睛】此題主要考查了由實際問題抽象出二元一次方程組和解二元一次方程組,關鍵是弄清題目意思,表示出“較小的兩位數寫在較大的兩位數的右邊,得到一個四位數為”,把較小的兩位數寫在較大的兩位數的左邊,得到另一個四位數為.21.(1)A款瓷磚單價為80元,B款單價為60元.(2)買了11塊A款瓷磚,2塊B款;或8塊A款瓷磚,6塊B款.(3)B款瓷磚的長和寬分別為1,或1,.【分析】(1)設A款瓷磚單價x元,B款單價y元,根據“一塊A款瓷磚和一塊B款瓷磚的價格和為140元;3塊A款瓷磚價格和4塊B款瓷磚價格相等”列出二元一次方程組,求解即可;(2)設A款買了m塊,B款買了n塊,且m>n,根據共花1000元列出二元一次方程,求出符合題意的整數解即可;(3)設A款正方形瓷磚邊長為a米,B款長為a米,寬b米,根據圖形以及“A款瓷磚的用量比B款瓷磚的2倍少14塊”可列出方程求出a的值,然后由是正整教分情況求出b的值.【詳解】解:(1)設A款瓷磚單價x元,B款單價y元,則有,解得,答:A款瓷磚單價為80元,B款單價為60元;(2)設A款買了m塊,B款買了n塊,且m>n,則80m+60n=1000,即4m+3n=50∵m,n為正整數,且m>n∴m=11時n=2;m=8時,n=6,答:買了11塊A款瓷磚,2塊B款瓷磚或8塊A款瓷磚,6塊B款瓷磚;(3)設A款正方形瓷磚邊長為a米,B款長為a米,寬b米.由題意得:,解得a=1.由題可知,是正整教.設(k為正整數),變形得到,當k=1時,,故合去),當k=2時,,故舍去),當k=3時,,當k=4時,,答:B款瓷磚的長和寬分別為1,或1,.【點睛】本題主要考查了二元一次方程組的實際應用,(1)(2)較為簡單,(3)中利用數形結合的思想,找出其中兩款瓷磚的數量與圖形之間的規(guī)律是解題的關鍵.22.(1)∠C+∠BAD=90°,理由見解析;(2)9°【分析】(1)先過點B作BG∥DM,根據同角的余角相等,得出∠ABD=∠CBG,再根據平行線的性質,得出∠C=∠CBG,即可得到∠ABD=∠C,可得∠C+∠BAD=90°;(2)先過點B作BG∥DM,根據角平分線的定義,得出∠ABF=∠GBF,再設∠DBE=α,∠ABF=β,根據∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°,根據AB⊥BC,可得β+β+2α=90°,最后解方程組即可得到∠ABE=9°.【詳解】解:(1)如圖2,過點B作BG∥DM,∵BD⊥AM,∴∠ABD+∠BAD=90°,DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C,∴∠C+∠BAD=90°;(2)如圖3,過點B作BG∥DM,BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(1)可得∠ABD=∠CBG,∴∠ABF=∠GBF,設∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=5∠DBE=5α,∴∠AFC=5α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=5α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+5α+(5α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②聯立方程組,解得α=9°,∴∠ABE=9°.【點睛】本題主要考查了平行線的性質的運用,解決問題的關鍵是作平行線構造內錯角,運用等角的余角(補角)相等進行推導.余角和補角計算的應用,常常與等式的性質、等量代換相關聯.解題時注意方程思想的運用.23.(1)A的單價30元,B的單價15元(2)購買A獎品8個,購買B獎品22個,花費最少【分析】(1)設A的單價為x元,B的單價為y元,根據題意列出方程組,即可求解;(2)設購買A獎品z個,則購買B獎品為個,購買獎品的花費為W元,根據題意得到由題意可知,,,根據一次函數的性質,即可求解;【詳解】解:(1)設A的單價為x元,B的單價為y元,根據題意,得,,A的單價30元,B的單價15元;(2)設購買A獎品z個,則購買B獎品為個,購買獎品的花費為W元,由題意可知,,,,當時,W有最小值為570元,即購買A獎品8個,購買B獎品22個,花費最少;【點睛】本題考查二元一次方程組的應用,一次函數的應用;能夠根據條件列出方程組,將最優(yōu)方案轉化為一次函數性質解題是關鍵.24.(1);(2)該公司有6種購買方案,方案1:購買10臺乙型設備;方案2:購買1臺甲型設備,9臺乙型設備;方案3:購買2臺甲型設備,8臺乙型設備;方案4:購買3臺甲型設備,7臺乙型設備;方案5:購買4臺甲型設備,6臺乙型設備;方案6:購買5臺甲型設備,5臺乙型設備;(3)最省錢的購買方案為:購買4臺甲型設備,6臺乙型設備.【分析】(1)由一臺A型設備的價格是x萬元,一臺乙型設備的價格是y萬元,根據題意得等量關系:購買一臺甲型設備-購買一臺乙型設備=2萬元,購買4臺乙型設備-購買3臺甲型設備=2萬元,根據等量關系,列出方程組,再解即可;(2)設購買甲型設備m臺,則購買乙型設備(10-m)臺,由題意得不等關系:購買甲型設備的花費+購買乙型設備的花費≤91萬元,根據不等關系列出不等式,再解即可;(3)由題意可得:甲型設備處理污水量+乙型設備處理污水量≥2750噸,根據不等關系,列出不等式,再解即可.【詳解】(1)依題意,得:,解得:.(2)設該治污公司購進m臺甲型設備,則購進(10﹣m)臺乙型設備,依題意,得:10m+8(10﹣m)≤91,解得:m≤5.又∵m為非零整數,∴m=0,1,2,3,4,5,∴該公司有6種購買方案,方案1:購買10臺乙型設備;方案2:購買1臺甲型設備,9臺乙型設備;方案3:購買2臺甲型設備,8臺乙型設備;方案4:購買3臺甲型設備,7臺乙型設備;方案5:購買4臺甲型設備,6臺乙型設備;方案6:購買5臺甲型設備,5臺乙型設備.(3)依題意,得:300m+260(10﹣m)≥2750,解得:m≥3,∴m=4,5.當m=4時,總費用為10×4+8×6=88(萬元);當m=5時,總費用為10×5+8×5=90(萬元).∵88<90,∴最省錢的購買方案為:購買4臺甲型設備,6臺乙型設備.【點睛】此題主要考查了二元一次方程組的應用和一元一次不等式的應用,關鍵是正確理解題意,找出題目中的等量關系和不等關系,列出方程(組)和不等式.25.(1)是.(2)a的最大值為,最小值為;(3)【分析】(1)先求解當時,的最大值與最小值,再根據定義判斷即可;(2)當時,得分<,分別求解在內時的最大值與最小值,再列不等式組即可得到答案;(3)當時,分,兩種情況分別求解的最大值與最小值,再列不等式(組)求解即可.【詳解】解:(1)當時,取最大值,當時,取最小值所以代數式是的“湘一代數式”.故答案為:是.(2)∵,∴0≤|x|≤2,∴①當a≥0時,x=0時,有最大值為,x=2或-2時,有最小值為所以可得不等式組,由①得:由②得:所以:②a<0時,x=0時,有最小值為,x=2或-2時,的有大值為所以可得不等式組,由①得:由②得:所以:<,綜上①②可得,所以a的最大值為,最小值為.(3)是的“湘一代數式”,當時,的最大值是最小值是當時,當時,取最小值當時,取最大值,解得:綜上:的取值范圍是:【點睛】本題考查的是新定義情境下的不等式或不等式組的應用,理解定義列不等式(組)是解題的關鍵.26.(1)1;(2)(3)【分析】(1)根據三角形的面積公式即可求解;(2)根據題意列出不等式組故可求解;(3)分Q點在AB上、BC上和CD上分別列出方程即可求解.【詳解】(1)當時,=1平方厘米;當時,=平方厘米;故答案為;;(2)解:根據題意,得解得,故的取值范圍為;(3)當Q點在AB上時,依題意可得解得;當Q點在BC上時,依題意可得解得>6,不符合題意;當Q點在AB上時,依題意可得或解得或;∴值為.【點睛】此題主要考查不等式組與一元一次方程的應用,解題的關鍵是根據題意得到方程或不等式組進行求解.27.(1)新建一個地上停車位需0.1萬元,新建一個地下停車位需0.5萬元;(2)一共2種建造方案;(3)當地上建39個車位地下建21個車位投資最少,金

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論