滬科版9年級下冊期末試卷帶答案詳解(典型題)_第1頁
滬科版9年級下冊期末試卷帶答案詳解(典型題)_第2頁
滬科版9年級下冊期末試卷帶答案詳解(典型題)_第3頁
滬科版9年級下冊期末試卷帶答案詳解(典型題)_第4頁
滬科版9年級下冊期末試卷帶答案詳解(典型題)_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、往直徑為78cm的圓柱形容器內(nèi)裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為()A.36cm B.27cm C.24cm D.15cm2、下列事件為隨機事件的是()A.四個人分成三組,恰有一組有兩個人 B.購買一張福利彩票,恰好中獎C.在一個只裝有白球的盒子里摸出了紅球 D.擲一次骰子,向上一面的點數(shù)小于73、下列事件是必然發(fā)生的事件是()A.在地球上,上拋的籃球一定會下落B.明天的氣溫一定比今天高C.中秋節(jié)晚上一定能看到月亮D.某彩票中獎率是1%,買100張彩票一定中獎一張4、下列圖形中,既是中心對稱圖形又是抽對稱圖形的是()A. B. C. D.5、如圖,AB是的直徑,CD是的弦,且,,,則圖中陰影部分的面積為()A. B. C. D.6、如圖,在Rt△ABC中,,,點D、E分別是AB、AC的中點.將△ADE繞點A順時針旋轉(zhuǎn)60°,射線BD與射線CE交于點P,在這個旋轉(zhuǎn)過程中有下列結(jié)論:①△AEC≌△ADB;②CP存在最大值為;③BP存在最小值為;④點P運動的路徑長為.其中,正確的()A.①②③ B.①②④ C.①③④ D.②③④7、在中,,cm,cm.以C為圓心,r為半徑的與直線AB相切.則r的取值正確的是()A.2cm B.2.4cm C.3cm D.3.5cm8、如圖,為正六邊形邊上一動點,點從點出發(fā),沿六邊形的邊以1cm/s的速度按逆時針方向運動,運動到點停止.設(shè)點的運動時間為,以點、、為頂點的三角形的面積是,則下列圖像能大致反映與的函數(shù)關(guān)系的是()A. B.C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、為了落實“雙減”政策,朝陽區(qū)一些學(xué)校在課后服務(wù)時段開設(shè)了與冬奧會項目冰壺有關(guān)的選修課.如圖,在冰壺比賽場地的一端畫有一些同心圓作為營壘,其中有兩個圓的半徑分別約為60cm和180cm,小明擲出一球恰好沿著小圓的切線滑行出界,則該球在大圓內(nèi)滑行的路徑MN的長度為______cm.2、《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有這樣的一個問題:“今有勾八步,股十五步,問勾中容圓徑幾何?”.其意思是:“如圖,現(xiàn)有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形所能容納的最大圓的直徑是多少?”答:該直角三角形所能容納的最大圓的直徑是______步.3、如圖,一次函數(shù)的圖象與x軸交于點A,與y軸交于點B,作的外接圓,則圖中陰影部分的面積為______.(結(jié)果保留π)4、在一個不透明的盒子里裝有若干個紅球和20個白球,這些球除顏色外其余全部相同,每次從袋子中摸出一球記下顏色后放回,通過多次重復(fù)實驗發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在0.6附近,則袋中紅球大約有________個.5、如圖,在平面直角坐標系xOy中,P為x軸正半軸上一點.已知點,,為的外接圓.(1)點M的縱坐標為______;(2)當最大時,點P的坐標為______.6、斛是中國古代的一種量器.據(jù)《漢書.律歷志》記載:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是說:“斛的底面為:正方形外接一個圓,此圓外是一個同心圓”.如圖所示,問題:現(xiàn)有一斛,其底面的外圓直徑為兩尺五寸(即2.5尺),“庣旁”為兩寸五分(即兩同心圓的外圓與內(nèi)圓的半徑之差為0.25尺),則此斛底面的正方形的邊長為________尺.7、在菱形ABCD中,AB=6,E為AB的中點,連結(jié)AC,DE交于點F,連結(jié)BF.記∠ABC=α(0°<α<180°).(1)當α=60°時,則AF的長是_____;(2)當α在變化過程中,BF的取值范圍是_____.三、解答題(7小題,每小題0分,共計0分)1、如圖1,圖2,圖3的網(wǎng)格均由邊長為1的小正方形組成,圖1是三國時期吳國的數(shù)學(xué)家趙爽所繪制的“弦圖”,它由四個形狀、大小完全相同的直角三角形組成,趙爽利用這個“弦圖”對勾股定理作出了證明,是中國古代數(shù)學(xué)的一項重要成就,請根據(jù)下列要求解答問題.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是對稱圖形(填“軸”或“中心”).(2)請將“弦圖”中的四個直角三角形通過你所學(xué)過的圖形變換,在圖2,3的方格紙中設(shè)計另外兩個不同的圖案,畫圖要求:①每個直角三角形的頂點均在方格紙的格點上,且四個三角形互不重疊,不必涂陰影;②圖2中所設(shè)計的圖案(不含方格紙)必須是軸對稱圖形而不是中心對稱圖形;圖3中所設(shè)計的圖案(不含方格紙)必須既是軸對稱圖形,又是中心對稱圖形.2、某省高考采用“3+1+2”模式:“3”是指語文、數(shù)學(xué)、英語3科為必選科目,“1”是指在物理、歷史2科中任選1科,“2”是指在思想政治、化學(xué)、生物、地理4科中任選2科.(1)假定在“1”中選擇歷史,在“2”中已選擇地理,則選擇生物的概率是________;(2)求同時選擇物理、化學(xué)、生物的概率.3、如圖,拋物線y=-+x+2與x軸負半軸交于點A,與y軸交于點B.(1)求A,B兩點的坐標;(2)如圖1,點C在y軸右側(cè)的拋物線上,且AC=BC,求點C的坐標;(3)如圖2,將△ABO繞平面內(nèi)點P順時針旋轉(zhuǎn)90°后,得到△DEF(點A,B,O的對應(yīng)點分別是點D,E,F(xiàn)),D,E兩點剛好在拋物線上.①求點F的坐標;②直接寫出點P的坐標.4、如圖,在中,,,將繞著點A順時針旋轉(zhuǎn)得到,連接BD,連接CE并延長交BD于點F.(1)求的度數(shù);(2)若,且,求DF的長.5、新高考“3+1+2”是指:3,語數(shù)外三科是必考科目;1,物理、歷史兩科中任選一科;2,化學(xué)、生物、地理、政治四科中任選兩科.某同學(xué)確定選擇“物理”,但他不確定其它兩科選什么,于是他做了一個游戲:他拿來四張不透明的卡片,正面分別寫著“化學(xué)、生物、地理、政治”,再將這四張卡片背面朝上并打亂順序,然后從這四張卡片中隨機抽取兩張,請你用畫樹狀圖(或列表)的方法,求該同學(xué)抽出的兩張卡片是“化學(xué)、政治”的概率.6、從2021年開始,重慶市新高考采用“”模式:“3”指全國統(tǒng)考科目,即:語文、數(shù)學(xué)、外語三個學(xué)科為必選科目;“1”為首選科目,即:物理、歷史這2個學(xué)科中任選1科,且必須選1科;“2”為再選科目,即:化學(xué)、生物、思想政治、地理這4個學(xué)科中任選2科,且必須選2科.小紅在高一上期期末結(jié)束后,需要選擇高考科目.(1)小紅在“首選科目”中,選擇歷史學(xué)科的概率是___________.(2)用列表法或畫樹狀圖法,求小紅在“再選科目”中選擇思想政治和地理這兩門學(xué)科的概率.7、正方形綠化場地擬種植兩種不同顏色(用陰影部分和非陰影部分表示)的花卉,要求種植的花卉能組成軸對稱或中心對稱圖案,下面是三種不同設(shè)計方案中的一部分.(1)請把圖①、圖②補成既是軸對稱圖形,又是中心對稱圖形,并畫出一條對稱軸;(2)把圖③補成只是中心對稱圖形,并把中心標上字母P.-參考答案-一、單選題1、C【分析】連接,過點作于點,交于點,先由垂徑定理求出的長,再根據(jù)勾股定理求出的長,進而得出的長即可.【詳解】解:連接,過點作于點,交于點,如圖所示:則,的直徑為,,在中,,,即水的最大深度為,故選:C.【點睛】本題考查了垂徑定理、勾股定理等知識,解題的關(guān)鍵是根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.2、B【分析】根據(jù)事件發(fā)生的可能性大小判斷.【詳解】解:A、四個人分成三組,恰有一組有兩個人,是必然事件,不合題意;B、購買一張福利彩票,恰好中獎,是隨機事件,符合題意;C、在一個只裝有白球的盒子里摸出了紅球,是不可能事件,不合題意;D、擲一次骰子,向上一面的點數(shù)小于7,是必然事件,不合題意;故選:B.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、A【分析】根據(jù)必然事件的概念(必然事件指在一定條件下一定發(fā)生的事件)可判斷正確答案.【詳解】解:A、在地球上,上拋的籃球一定會下落是必然事件,符合題意;B、明天的氣溫一定比今天的高,是隨機事件,不符合題意;C、中秋節(jié)晚上一定能看到月亮,是隨機事件,不符合題意;D、某彩票中獎率是1%,買100張彩票一定中獎一張,是隨機事件,不符合題意.故選:A.【點睛】本題考查了必然事件的概念,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.關(guān)鍵是理解必然事件指在一定條件下一定發(fā)生的事件.4、B【詳解】解:.是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;.既是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;.是軸對稱圖形,不是中心對稱圖形,故此選項不符合題意;.不是軸對稱圖形,是中心對稱圖形,故此選項不符合題意;故選:B.【點睛】本題主要考查了中心對稱圖形和軸對稱圖形的概念,解題的關(guān)鍵是判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合;判斷中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.5、C【分析】如圖,連接OC,OD,可知是等邊三角形,,,,計算求解即可.【詳解】解:如圖連接OC,OD∵∴是等邊三角形∴由題意知,故選C.【點睛】本題考查了扇形的面積,等邊三角形等知識.解題的關(guān)鍵在于用扇形表示陰影面積.6、B【分析】根據(jù),,點D、E分別是AB、AC的中點.得出∠DAE=90°,AD=AE=,可證∠DAB=∠EAC,再證△DAB≌△EAC(SAS),可判斷①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當CP為⊙A的切線時,CP最大,根據(jù)△AEC≌△ADB,得出∠DBA=∠ECA,可證∠P=∠BAC=90°,CP為⊙A的切線,證明四邊形DAEP為正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判斷②CP存在最大值為正確;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判斷③BP存在最小值為不正確;取BC中點為O,連結(jié)AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,當AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,可求∠ACE=30°,根據(jù)圓周角定理得出∠AOP=2∠ACE=60°,當AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,可得∠ABD=30°根據(jù)圓周角定理得出∠AOP′=2∠ABD=60°,點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,L可判斷④點P運動的路徑長為正確即可.【詳解】解:∵,,點D、E分別是AB、AC的中點.∴∠DAE=90°,AD=AE=,∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),故①△AEC≌△ADB正確;作以點A為圓心,AE為半徑的圓,當CP為⊙A的切線時,CP最大,∵△AEC≌△ADB,∴∠DBA=∠ECA,∴∠PBA+∠P=∠ECP+∠BAC,∴∠P=∠BAC=90°,∵CP為⊙A的切線,∴AE⊥CP,∴∠DPE=∠PEA=∠DAE=90°,∴四邊形DAEP為矩形,∵AD=AE,∴四邊形DAEP為正方形,∴PE=AE=3,在Rt△AEC中,CE=,∴CP最大=PE+EC=3+,故②CP存在最大值為正確;∵△AEC≌△ADB,∴BD=CE=,在Rt△BPC中,BP最小=,BP最短=BD-PD=-3,故③BP存在最小值為不正確;取BC中點為O,連結(jié)AO,OP,∵AB=AC=6,∠BAC=90°,∴BP=CO=AO=,當AE⊥CP時,CP與以點A為圓心,AE為半徑的圓相切,此時sin∠ACE=,∴∠ACE=30°,∴∠AOP=2∠ACE=60°,當AD⊥BP′時,BP′與以點A為圓心,AE為半徑的圓相切,此時sin∠ABD=,∴∠ABD=30°,∴∠AOP′=2∠ABD=60°,∴點P在以點O為圓心,OA長為半徑,的圓上運動軌跡為,∵∠POP=∠POA+∠AOP′=60°+60°=120°,∴L.故④點P運動的路徑長為正確;正確的是①②④.故選B.【點睛】本題考查圖形旋轉(zhuǎn)性質(zhì),線段中點定義,三角形全等判定與性質(zhì),圓的切線,正方形判定與性質(zhì),勾股定理,銳角三角函數(shù),弧長公式,本題難度大,利用輔助線最長準確圖形是解題關(guān)鍵.7、B【分析】如圖所示,過C作CD⊥AB,交AB于點D,在直角三角形ABC中,由AC與BC的長,利用勾股定理求出AB的長,利用面積法求出CD的長,即為所求的r.【詳解】解:如圖所示,過C作CD⊥AB,交AB于點D,在Rt△ABC中,AC=3cm,BC=4cm,根據(jù)勾股定理得:AB==5(cm),∵S△ABC=BC?AC=AB?CD,∴×3×4=×10×CD,解得:CD=2.4,則r=2.4(cm).故選:B.【點睛】此題考查了切線的性質(zhì),勾股定理,以及三角形面積求法,熟練掌握切線的性質(zhì)是解本題的關(guān)鍵.8、A【分析】設(shè)正六邊形的邊長為1,當在上時,過作于而求解此時的函數(shù)解析式,當在上時,延長交于點過作于并求解此時的函數(shù)解析式,當在上時,連接并求解此時的函數(shù)解析式,由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,從而可得答案.【詳解】解:設(shè)正六邊形的邊長為1,當在上時,過作于而當在上時,延長交于點過作于同理:則為等邊三角形,當在上時,連接由正六邊形的性質(zhì)可得:由正六邊形的對稱性可得:而由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,所以符合題意的是A,故選A【點睛】本題考查的是動點問題的函數(shù)圖象,銳角三角函數(shù)的應(yīng)用,正多邊形的性質(zhì),清晰的分類討論是解本題的關(guān)鍵.二、填空題1、【分析】如圖,設(shè)小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,根據(jù)切線的性質(zhì)定理和垂徑定理求解即可.【詳解】解:如圖,設(shè)小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,則OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即該球在大圓內(nèi)滑行的路徑MN的長度為cm,故答案為:.【點睛】本題考查切線的性質(zhì)定理、垂徑定理、勾股定理,熟練掌握切線的性質(zhì)和垂徑定理是解答的關(guān)鍵.2、6【分析】依題意,直角三角形性質(zhì),結(jié)合題意能夠容納的最大為內(nèi)切圓,結(jié)合內(nèi)切圓半徑,利用等積法求解即可;【詳解】設(shè)直角三角形中能容納最大圓的半徑為:;依據(jù)直角三角形的性質(zhì):可得斜邊長為:依據(jù)直角三角形面積公式:,即為;內(nèi)切圓半徑面積公式:,即為;所以,可得:,所以直徑為:;故填:6;【點睛】本題主要考查直角三角形及其內(nèi)切圓的性質(zhì),重點在理解題意和利用內(nèi)切圓半徑求解面積;3、【分析】先求出A、B、C坐標,再證明三角形BOC是等邊三角形,最后根據(jù)扇形面積公式計算即可.【詳解】過C作CD⊥OA于D∵一次函數(shù)的圖象與x軸交于點A,與y軸交于點B,∴當時,,B點坐標為(0,1)當時,,A點坐標為∴∵作的外接圓,∴線段AB中點C的坐標為,∴三角形BOC是等邊三角形∴∵C的坐標為∴∴故答案為:【點睛】本題主要考查了一次函數(shù)的綜合運用,求扇形面積.用已知點的坐標表示相應(yīng)的線段是解題的關(guān)鍵.4、30【分析】設(shè)袋中紅球有x個,根據(jù)題意用紅球數(shù)除以白球和紅球的總數(shù)等于紅球的頻率列出方程即可求出紅球數(shù).【詳解】解:設(shè)袋中紅球有x個,根據(jù)題意,得:,解并檢驗得:x=30.所以袋中紅球有30個.故答案為:30.【點睛】本題考查了利用頻率估計概率,解決本題的關(guān)鍵是用頻率的集中趨勢來估計概率,這個固定的近似值5、5(4,0)【分析】(1)根據(jù)點M在線段AB的垂直平分線上求解即可;(2)點P在⊙M切點處時,最大,而四邊形OPMD是矩形,由勾股定理求解即可.【詳解】解:(1)∵⊙M為△ABP的外接圓,∴點M在線段AB的垂直平分線上,∵A(0,2),B(0,8),∴點M的縱坐標為:,故答案為:5;(2)過點,,作⊙M與x軸相切,則點M在切點處時,最大,理由:若點是x軸正半軸上異于切點P的任意一點,設(shè)交⊙M于點E,連接AE,則∠AEB=∠APB,∵∠AEB是ΔAE的外角,∴∠AEB>∠AB,∵∠APB>∠AB,即點P在切點處時,∠APB最大,∵⊙M經(jīng)過點A(0,2)、B(0,8),∴點M在線段AB的垂直平分線上,即點M在直線y=5上,∵⊙M與x軸相切于點P,MP⊥x軸,從而MP=5,即⊙M的半徑為5,設(shè)AB的中點為D,連接MD、AM,如上圖,則MD⊥AB,AD=BD=AB=3,BM=MP=5,而∠POD=90°,∴四邊形OPMD是矩形,從而OP=MD,由勾股定理,得MD=,∴OP=MD=4,∴點P的坐標為(4,0),故答案為:(4,0).【點睛】本題考查了切線的性質(zhì),線段垂直平分線的性質(zhì),矩形的判定及勾股定理,正確作出圖形是解題的關(guān)鍵.6、【分析】如圖,根據(jù)四邊形CDEF為正方形,可得∠D=90°,CD=DE,從而得到CE是直徑,∠ECD=45°,然后利用勾股定理,即可求解.【詳解】解:如圖,∵四邊形CDEF為正方形,∴∠D=90°,CD=DE,∴CE是直徑,∠ECD=45°,根據(jù)題意得:AB=2.5,,∴,∴,即此斛底面的正方形的邊長為尺.故答案為:【點睛】本題主要考查了圓內(nèi)接四邊形,勾股定理,熟練掌握圓內(nèi)接四邊形的性質(zhì),勾股定理是解題的關(guān)鍵.7、2【分析】(1)證明是等邊三角形,,進而即可求得;(2)過點作,交于點,以為圓心長度為半徑作半圓,交的延長延長線于點,證明在半圓上,進而即可求得范圍.【詳解】(1)如圖,四邊形是菱形,是等邊三角形是的中點即故答案為:2(2)如圖,過點作,交于點,以為圓心長度為半徑作半圓,交的延長延長線于點,四邊形是菱形,在以為圓心長度為半徑的圓上,又∠ABC=α(0°<α<180°)在半圓上,最小值為最大值為故答案為:【點睛】本題考查了相似三角形的性質(zhì)與判定,點與圓的位置關(guān)系求最值問題,掌握相似三角形的性質(zhì)與判定是解題的關(guān)鍵.三、解答題1、(1)中心(2)見解析【分析】(1)利用中心對稱圖形的意義得到答案即可;(2)①每個直角三角形的頂點均在方格紙的格點上,且四個三角形不重疊,是軸對稱圖形;②所設(shè)計的圖案(不含方格紙)必須是中心對稱圖形或軸對稱圖形.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是中心對稱圖形,故答案為:中心;(2)如圖2是軸對稱圖形而不是中心對稱圖形;圖3既是軸對稱圖形,又是中心對稱圖形.【點睛】本題考查利用旋轉(zhuǎn)或軸對稱設(shè)計方案,關(guān)鍵是理解旋轉(zhuǎn)和軸對稱的概念,按要求作圖即可.2、(1)(2)【分析】(1)直接根據(jù)概率公式即可得出答案;(2)根據(jù)題意畫出樹狀圖得出所有等可能的情況數(shù),找出符合條件的情況數(shù),然后根據(jù)概率公式即可得出答案.(1)解:在“2”中已選擇了地理,從剩下的化學(xué)、生物,思想品德三科中選一科,因此選擇生物的概率為.故答案為:;(2)解:用樹狀圖表示所有可能出現(xiàn)的結(jié)果如下:共有12種等可能的結(jié)果數(shù),其中選中“化學(xué)”“生物”的有2種,則.在“1”中選擇物理的概率,同時選擇物理、化學(xué)、生物的概率.故答案為:.【點睛】本題考查的是用列表法或樹狀圖法求概率,解題的關(guān)鍵是掌握列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.3、(1)A(-1,0),B(0,2);(2)點C的坐標(,);(3)①求點F的坐標(1,2);②點P的坐標(,)【分析】(1)令x=0,求得y值,得點B的坐標;令y=0,求得x的值,取較小的一個即求A點的坐標;(2)設(shè)C的坐標為(x,-+x+2),根據(jù)AC=BC,得到,令t=-+x,解方程即可;(3)①根據(jù)題意,得∠BPE=90°,PB=PE即點P在線段BE的垂直平分線上,根據(jù)B,E都在拋物線上,則B,E是對稱點,從而確定點P在拋物線的對稱軸上,點F在BE上,且BE∥x軸,點E(3,2),確定BE=3,根據(jù)旋轉(zhuǎn)性質(zhì),得EF=BO=2,從而確定點F的坐標;②根據(jù)BE=3,∠BPE=90°,PB=PE,確定P到BE的距離,即可寫出點P的坐標.【詳解】(1)令x=0,得y=2,∴點B的坐標為B(0,2);令y=0,得-+x+2=0,解得∵點A在x軸的負半軸;∴A點的坐標(-1,0);(2)設(shè)C的坐標為(x,-+x+2),∵AC=BC,A(-1,0),B(0,2),∴,∵A(-1,0),B(0,2),∴,即,設(shè)t=-+x,∴,∴,∴,∴,整理,得,解得∵點C在y軸右側(cè)的拋物線上,∴,此時y=,∴點C的坐標(,);(3)①如圖,根據(jù)題意,得∠BPE=90°,PB=PE即點P在線段BE的垂直平分線上,∵B,E都在拋物線上,∴B,E是對稱點,∴點P在拋物線的對稱軸上,點F在BE上,且BE∥x軸,∵拋物線的對稱軸為直線x=,B(0,2),∴點E(3,2),BE=3,∵EF=BO=2,∴BF=1,∴點F的坐標為(1,2);②如圖,設(shè)拋物線的對稱軸與BE交于點M,交x軸與點N,∵BE=3,∴BM=,∵∠BPE=90°,PB=PE,∴PM=BM=,∴PM=BM=,∴PN=2-=,∴點P的坐標為(,).【點睛】本題考查了拋物線與坐標軸的交點,旋轉(zhuǎn)的性質(zhì),兩點間的距離公式,一元二次方程的解法,換元法解方程,熟練掌握拋物線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論