高考數(shù)列真題及答案_第1頁
高考數(shù)列真題及答案_第2頁
高考數(shù)列真題及答案_第3頁
高考數(shù)列真題及答案_第4頁
高考數(shù)列真題及答案_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

高考數(shù)列真題及答案

一、單項選擇題1.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),若\(a_{3}=5\),\(S_{9}=81\),則\(a_{7}=\)()A.18B.13C.9D.7答案:B2.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{2}=2\),\(a_{5}=16\),則公比\(q\)為()A.2B.3C.4D.8答案:A3.數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{1}=1\),\(a_{n+1}=2a_{n}+1\),則\(a_{3}\)的值為()A.7B.9C.11D.13答案:A4.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)的公差\(d\neq0\),且\(a_{1}\),\(a_{3}\),\(a_{9}\)成等比數(shù)列,則\(\frac{a_{1}+a_{3}+a_{9}}{a_{2}+a_{4}+a_{10}}\)的值是()A.\(\frac{13}{16}\)B.\(\frac{15}{16}\)C.\(\frac{11}{16}\)D.\(\frac{12}{16}\)答案:A5.若數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式為\(a_{n}=2n-1\),\(b_{n}=(-1)^{n-1}\frac{4n}{a_{n}a_{n+1}}\),則數(shù)列\(zhòng)(\{b_{n}\}\)的前\(n\)項和\(T_{n}\)為()A.\(\frac{2n}{2n+1}\)B.\(\frac{4n}{2n+1}\)C.\(\frac{2n}{2n-1}\)D.\(\frac{4n}{2n-1}\)答案:B6.已知數(shù)列\(zhòng)(\{a_{n}\}\)是等比數(shù)列,\(S_{n}\)是其前\(n\)項和,若\(a_{2}a_{3}=2a_{1}\),且\(a_{4}\)與\(2a_{7}\)的等差中項為\(\frac{5}{4}\),則\(S_{5}=\)()A.35B.33C.31D.29答案:C7.數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{n+1}=a_{n}+\frac{1}{n(n+1)}\),則\(a_{10}\)的值為()A.\(\frac{9}{10}\)B.\(\frac{19}{10}\)C.\(\frac{17}{10}\)D.\(\frac{11}{10}\)答案:B8.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),若\(S_{17}=170\),則\(a_{9}\)的值為()A.10B.15C.20D.25答案:A9.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}+a_{2}+a_{3}=1\),\(a_{4}+a_{5}+a_{6}=-2\),則該等比數(shù)列的公比\(q\)為()A.-1B.-2C.-\sqrt{2}D.\sqrt[3]{-2}答案:D10.數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}=\frac{1}{1-a_{n}}\),\(a_{8}=2\),則\(a_{1}\)等于()A.\(\frac{1}{2}\)B.\(\frac{1}{3}\)C.\(\frac{1}{4}\)D.\(\frac{1}{5}\)答案:A二、多項選擇題1.設(shè)等差數(shù)列\(zhòng)(\{a_{n}\}\)的公差為\(d\),前\(n\)項和為\(S_{n}\),若\(a_{3}=12\),\(S_{12}\gt0\),\(S_{13}\lt0\),則下列結(jié)論正確的是()A.數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列B.\(S_{5}=60\)C.\(-\frac{24}{7}\ltd\lt-3\)D.\(S_{1}\),\(S_{2}\),\(\cdots\),\(S_{12}\)中最大的是\(S_{6}\)答案:BCD2.已知等比數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{1}=\frac{1}{4}\),\(a_{3}a_{5}=4(a_{4}-1)\),則下列結(jié)論正確的是()A.\(a_{2}=\frac{1}{2}\)B.\(a_{n}=2^{n-3}\)C.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=2^{n-2}-\frac{1}{4}\)D.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項積\(T_{n}\)的最大值為\(1\)答案:AD3.已知數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),且\(S_{n}=2a_{n}-2\),則下列結(jié)論正確的是()A.\(a_{2}=4\)B.數(shù)列\(zhòng)(\{a_{n}\}\)是等比數(shù)列C.\(a_{n}=2^{n}\)D.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=2^{n+1}-2\)答案:ABCD4.設(shè)\(\{a_{n}\}\)是等差數(shù)列,\(S_{n}\)為其前\(n\)項和,且\(S_{7}\ltS_{8}\),\(S_{8}=S_{9}\gtS_{10}\),則下列結(jié)論正確的是()A.\(d\lt0\)B.\(a_{9}=0\)C.\(S_{11}\gtS_{7}\)D.\(S_{8}\)與\(S_{9}\)均為\(S_{n}\)的最大值答案:ABD5.已知數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{1}=1\),\(a_{n+1}=2a_{n}+1\),則()A.數(shù)列\(zhòng)(\{a_{n}+1\}\)是等比數(shù)列B.數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式\(a_{n}=2^{n}-1\)C.數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列D.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=2^{n+1}-n-2\)答案:ABC6.已知數(shù)列\(zhòng)(\{a_{n}\}\)是等比數(shù)列,公比\(q\gt1\),前\(n\)項和為\(S_{n}\),若\(a_{2}+a_{3}+a_{4}=28\),\(a_{3}+2\)是\(a_{2}\),\(a_{4}\)的等差中項,則下列說法正確的是()A.\(q=2\)B.\(a_{1}=2\)C.\(S_{n}=2^{n+1}-2\)D.數(shù)列\(zhòng)(\{\log_{2}a_{n}\}\)的前\(n\)項和\(T_{n}=\frac{n(n+1)}{2}\)答案:AD7.已知數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}=\frac{a_{n}}{1+a_{n}}\),\(a_{1}=1\),則()A.數(shù)列\(zhòng)(\{\frac{1}{a_{n}}\}\)是等差數(shù)列B.\(a_{n}=\frac{1}{n}\)C.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=\frac{n}{n+1}\)D.數(shù)列\(zhòng)(\{\frac{1}{a_{n}}\}\)的前\(n\)項和\(T_{n}=\frac{n(n+1)}{2}\)答案:ABD8.設(shè)\(\{a_{n}\}\)是首項為\(a_{1}\),公差為\(d\)的等差數(shù)列,\(\{b_{n}\}\)是首項為\(b_{1}\),公比為\(q\)的等比數(shù)列,則下列說法正確的是()A.若\(a_{n}=b_{n}\)對\(n=1\),\(2\),\(3\)都成立,則\(a_{1}=b_{1}\)B.若\(a_{n}=b_{n}\)對\(n=1\),\(2\),\(3\)都成立,則\(d=b_{1}(q-1)\)C.若\(a_{1}=b_{1}\),\(d=b_{1}(q-1)\),則\(a_{n}=b_{n}\)對\(n\inN^{}\)都成立D.若\(a_{n}=b_{n}\)對\(n=1\),\(2\),\(3\)都成立,且\(q\neq1\),則\(a_{1}=b_{1}\),\(d=b_{1}(q-1)\)答案:ABD9.已知數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=n^{2}-6n\),則()A.\(\{a_{n}\}\)是等差數(shù)列B.\(a_{n}=2n-7\)C.\(S_{n}\)的最小值為\(-9\)D.使得\(S_{n}\lt0\)的\(n\)的最大值為\(5\)答案:ABC10.已知數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{1}=1\),\(a_{n+1}=a_{n}+n+1\),則()A.\(a_{n}=\frac{n(n+1)}{2}\)B.數(shù)列\(zhòng)(\{\frac{1}{a_{n}}\}\)的前\(n\)項和\(T_{n}=\frac{2n}{n+1}\)C.數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=\frac{n(n+1)(n+2)}{6}\)D.數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列答案:ABD三、判斷題1.若數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和\(S_{n}=n^{2}\),則\(a_{n}=2n-1\)。(√)2.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,若\(a_{1}\lt0\),\(q\gt1\),則數(shù)列\(zhòng)(\{a_{n}\}\)是遞增數(shù)列。(×)3.等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),若\(a_{6}=0\),則\(S_{11}=0\)。(√)4.若數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{n+1}-a_{n}=n\),則\(a_{n}\)是等差數(shù)列。(×)5.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{1}+a_{2}=1\),\(a_{3}+a_{4}=9\),則公比\(q=3\)。(×)6.已知數(shù)列\(zhòng)(\{a_{n}\}\)的通項公式\(a_{n}=n^{2}-5n+4\),則\(a_{n}\)的最小值為\(-\frac{9}{4}\)。(×)7.若數(shù)列\(zhòng)(\{a_{n}\}\)是等比數(shù)列,且\(a_{n}\gt0\),\(a_{2}a_{4}+2a_{3}a_{5}+a_{4}a_{6}=25\),則\(a_{3}+a_{5}=5\)。(√)8.等差數(shù)列\(zhòng)(\{a_{n}\}\)中,\(S_{n}\)是其前\(n\)項和,若\(S_{10}=S_{20}\),則\(S_{30}=0\)。(√)9.數(shù)列\(zhòng)(\{a_{n}\}\)滿足\(a_{1}=1\),\(a_{n+1}=2a_{n}\),則\(a_{n}=2^{n-1}\)。(√)10.等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{5}=2\),\(a_{9}=8\),則\(a_{7}=4\)。(√)四、簡答題1.已知等差數(shù)列\(zhòng)(\{a_{n}\}\)的前\(n\)項和為\(S_{n}\),\(a_{3}=7\),\(S_{4}=24\),求\(a_{n}\)與\(S_{n}\)。答案:設(shè)等差數(shù)列\(zhòng)(\{a_{n}\}\)的公差為\(d\)。由\(a_{3}=7\)可得\(a_{1}+2d=7\);由\(S_{4}=24\)可得\(4a_{1}+\frac{4\times3}{2}d=24\),即\(4a_{1}+6d=24\)。聯(lián)立方程\(\begin{cases}a_{1}+2d=7\\4a_{1}+6d=24\end{cases}\),解得\(\begin{cases}a_{1}=3\\d=2\end{cases}\)。所以\(a_{n}=a_{1}+(n-1)d=3+2(n-1)=2n+1\),\(S_{n}=na_{1}+\frac{n(n-1)}{2}d=3n+n(n-1)=n^{2}+2n\)。2.已知等比數(shù)列\(zhòng)(\{a_{n}\}\)中,\(a_{2}=2\)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論