數(shù)學蘇教七年級下冊期末解答題壓軸質(zhì)量測試試卷答案_第1頁
數(shù)學蘇教七年級下冊期末解答題壓軸質(zhì)量測試試卷答案_第2頁
數(shù)學蘇教七年級下冊期末解答題壓軸質(zhì)量測試試卷答案_第3頁
數(shù)學蘇教七年級下冊期末解答題壓軸質(zhì)量測試試卷答案_第4頁
數(shù)學蘇教七年級下冊期末解答題壓軸質(zhì)量測試試卷答案_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

數(shù)學蘇教七年級下冊期末解答題壓軸質(zhì)量測試試卷答案一、解答題1.小明在學習過程中,對教材中的一個有趣問題做如下探究:(習題回顧)已知:如圖1,在中,,是角平分線,是高,、相交于點.求證:;(變式思考)如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點,其反向延長線與邊的延長線交于點,則與還相等嗎?說明理由;(探究延伸)如圖3,在中,上存在一點,使得,的平分線交于點.的外角的平分線所在直線與的延長線交于點.直接寫出與的數(shù)量關系.2.己知:如圖①,直線直線,垂足為,點在射線上,點在射線上(、不與點重合),點在射線上且,過點作直線.點在點的左邊且(1)直接寫出的面積;(2)如圖②,若,作的平分線交于,交于,試說明;(3)如圖③,若,點在射線上運動,的平分線交的延長線于點,在點運動過程中的值是否變化?若不變,求出其值;若變化,求出變化范圍.3.模型與應用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數(shù)為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數(shù)為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線M1O與∠CMnMn-1的角平分線MnO交于點O,若∠M1OMn=m°.在(2)的基礎上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數(shù).(用含m、n的代數(shù)式表示)4.如圖,在中,與的角平分線交于點.(1)若,則;(2)若,則;(3)若,與的角平分線交于點,的平分線與的平分線交于點,,的平分線與的平分線交于點,則.5.已知ABCD,點E是平面內(nèi)一點,∠CDE的角平分線與∠ABE的角平分線交于點F.(1)若點E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關系并證明你的結論;(2)若點E的位置如圖2所示,∠F與∠BED滿足的數(shù)量關系式是.(3)若點E的位置如圖3所示,∠CDE為銳角,且,設∠F=α,則α的取值范圍為.6.如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.(1)試判斷直線AB與直線CD的位置關系,并說明理由;(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF//GH.(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值若變化,說明理由.7.已知,點、分別是、上的點,點在、之間,連接、.(1)如圖1,若,求的度數(shù).(2)在(1)的條件下,分別作和的平分線交于點,求的度數(shù).(3)如圖2,若點是下方一點,平分,平分,已知.則判斷以下兩個結論是否正確,并證明你認為正確的結論.①為定值;②為定值.8.模型規(guī)律:如圖1,延長交于點D,則.因為凹四邊形形似箭頭,其四角具有“”這個規(guī)律,所以我們把這個模型叫做“箭頭四角形”.模型應用(1)直接應用:①如圖2,,則__________;②如圖3,__________;(2)拓展應用:①如圖4,、的2等分線(即角平分線)、交于點,已知,,則__________;②如圖5,、分別為、的10等分線.它們的交點從上到下依次為、、、…、.已知,,則__________;③如圖6,、的角平分線、交于點D,已知,則__________;④如圖7,、的角平分線、交于點D,則、、之同的數(shù)量關系為__________.9.如圖,直線MN∥GH,直線l1分別交直線MN、GH于A、B兩點,直線l2分別交直線MN、GH于C、D兩點,且直線l1、l2交于點E,點P是直線l2上不同于C、D、E點的動點.(1)如圖①,當點P在線段CE上時,請直寫出∠NAP、∠HBP、∠APB之間的數(shù)量關系:;(2)如圖②,當點P在線段DE上時,(1)中的∠NAP、∠HBP、∠APB之間的數(shù)量關系還成立嗎?如果成立,請說明成立的理由;如果不成立,請寫出這三個角之間的數(shù)量關系,并說明理由.(3)如果點P在直線l2上且在C、D兩點外側(cè)運動時,其他條件不變,請直接寫出∠NAP、∠HBP、∠APB之間的數(shù)量關系.10.如圖1,在中,平分,平分.(1)若,則的度數(shù)為______;(2)若,直線經(jīng)過點.①如圖2,若,求的度數(shù)(用含的代數(shù)式表示);②如圖3,若繞點旋轉(zhuǎn),分別交線段于點,試問在旋轉(zhuǎn)過程中的度數(shù)是否會發(fā)生改變?若不變,求出的度數(shù)(用含的代數(shù)式表示),若改變,請說明理由:③如圖4,繼續(xù)旋轉(zhuǎn)直線,與線段交于點,與的延長線交于點,請直接寫出與的關系(用含的代數(shù)式表示).【參考答案】一、解答題1.[習題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質(zhì)即可解析:[習題回顧]證明見解析;[變式思考]相等,證明見解析;[探究延伸]∠M+∠CFE=90°,證明見解析.【分析】[習題回顧]根據(jù)同角的余角相等可證明∠B=∠ACD,再根據(jù)三角形的外角的性質(zhì)即可證明;[變式思考]根據(jù)角平分線的定義和對頂角相等可得∠CAE=∠DAF、再根據(jù)直角三角形的性質(zhì)和等角的余角相等即可得出=;[探究延伸]根據(jù)角平分線的定義可得∠EAN=90°,根據(jù)直角三角形兩銳角互余可得∠M+∠CEF=90°,再根據(jù)三角形外角的性質(zhì)可得∠CEF=∠CFE,由此可證∠M+∠CFE=90°.【詳解】[習題回顧]證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;[變式思考]相等,理由如下:證明:∵AF為∠BAG的角平分線,∴∠GAF=∠DAF,∵∠CAE=∠GAF,∴∠CAE=∠DAF,∵CD為AB邊上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE;[探究延伸]∠M+∠CFE=90°,證明:∵C、A、G三點共線

AE、AN為角平分線,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【點睛】本題考查三角形的外角的性質(zhì),直角三角形兩銳角互余,角平分線的有關證明,等角或同角的余角相等.在本題中用的比較多的是利用等角或同角的余角相等證明角相等和三角形一個外角等于與它不相鄰的兩個內(nèi)角之和,理解并掌握是解決此題的關鍵.2.(1)3;(2)見解析;(3)見解析【詳解】分析:(1)因為△BCD的高為OC,所以S△BCD=CD?OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3;(2)見解析;(3)見解析【詳解】分析:(1)因為△BCD的高為OC,所以S△BCD=CD?OC,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.詳解:(1)S△BCD=CD?OC=×3×2=3.(2)如圖②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°.∵直線MN⊥直線PQ,∴∠BOC=∠OBE+∠OEB=90°.∵BF是∠CBA的平分線,∴∠CBF=∠OBE.∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如圖③,∵直線l∥PQ,∴∠ADC=∠PAD.∵∠ADC=∠DAC∴∠CAP=2∠DAC.∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC.∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA∵CH是,∠ACB的平分線,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.點睛:本題主要考查垂線,角平分線和三角形面積,解題的關鍵是找準相等的角求解.3.(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【應用】(2)分別過E點,F(xiàn)點,G點,H點作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解題方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°,180°(n-1);(3)過點O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠CMnO=∠MnOR∴∠AM1O+∠CMnO=∠M1OR+∠MnOR,∴∠AM1O+∠CMnO=∠M1OMn=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠AM1O,同理∠CMnMn-1=2∠CMnO,∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,又∵∠AM1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°點睛:本題考查了平行線的性質(zhì),角平分線的定義,解決此類題目,過拐點作平行線是解題的關鍵,準確識圖理清圖中各角度之間的關系也很重要.4.(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線的性質(zhì),結合三角形的內(nèi)角和定理可得到角之間的關系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平解析:(1)110(2)(90+n)(3)×90°+n°【分析】(1)根據(jù)角平分線的性質(zhì),結合三角形的內(nèi)角和定理可得到角之間的關系,然后求解即可;(2)根據(jù)BO、CO分別是∠ABC與∠ACB的角平分線,用n°的代數(shù)式表示出∠OBC與∠OCB的和,再根據(jù)三角形的內(nèi)角和定理求出∠BOC的度數(shù);(3)根據(jù)規(guī)律直接計算即可.【詳解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵點O是∠AB故答案為:110°;C與∠ACB的角平分線的交點,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO、CO分別是∠ABC與∠ACB的角平分線,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣n°)=90°﹣n°,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+n°.故答案為:(90+n);(3)由(2)得∠O=90°+n°,∵∠ABO的平分線與∠ACO的平分線交于點O1,∴∠O1BC=∠ABC,∠O1CB=∠ACB,∴∠O1=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=×180°+n°,同理,∠O2=×180°+n°,∴∠On=×180°+n°,∴∠O2017=×180°+n°,故答案為:×90°+n°.【點睛】本題考查了三角形內(nèi)角和定理,角平分線定義的應用,注意:三角形的內(nèi)角和等于180°.5.(1)①70;②∠F=∠BED,證明見解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①過F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F=∠BED,證明見解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①過F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分線的定義得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;②分別過E、F作EN//AB,F(xiàn)M//AB,利用平行線的判定和性質(zhì)得到∠BED=∠ABE+∠CDE,利用角平分線的定義得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根據(jù)∠ABE的平分線與∠CDE的平分線相交于點F,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結合①的結論即可說明∠BED與∠BFD之間的數(shù)量關系;(3)通過對的計算求得,利用角平分線的定義以及三角形外角的性質(zhì)求得,即可求得.【詳解】(1)①過F作FG//AB,如圖:∵AB∥CD,F(xiàn)G∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,∴∠ABF+∠CDF=70,∴∠DFB=∠ABF+∠CDF=70,故答案為:70;②∠F=∠BED,理由是:分別過E、F作EN//AB,F(xiàn)M//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分別是∠CDE的角平分線與∠ABE的角平分線,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∴∠F=∠BED;(3)2∠F+∠BED=360°.如圖,過點E作EG∥AB,則∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵,∠F=α,∴,解得:,如圖,∵∠CDE為銳角,DF是∠CDE的角平分線,∴∠CDH=∠DHB,∴∠F∠DHB,即,∴,故答案為:.【點睛】本題考查了平行線的性質(zhì)、角平分線的定義以及三角形外角性質(zhì)的應用,在解答此題時要注意作出輔助線,構造出平行線求解.6.(1)見詳解;(2)見詳解;(3)∠HPQ的大小不發(fā)生變化,理由見詳解.【分析】(1)根據(jù)同旁內(nèi)角互補,兩條直線平行即可判斷直線AB與直線CD平行;(2)先根據(jù)兩條直線平行,同旁內(nèi)角互補,再根解析:(1)見詳解;(2)見詳解;(3)∠HPQ的大小不發(fā)生變化,理由見詳解.【分析】(1)根據(jù)同旁內(nèi)角互補,兩條直線平行即可判斷直線AB與直線CD平行;(2)先根據(jù)兩條直線平行,同旁內(nèi)角互補,再根據(jù)∠BEF與∠EFD的角平分線交于點P,可得∠EPF=90°,進而證明PF∥GH;(3)根據(jù)角平分線定義,及角的和差計算即可求得∠HPQ的度數(shù),進而即可得到結論.【詳解】解:(1)AB∥CD,理由如下:∵∠1與∠2互補,∴∠1+∠2=180°,又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF與∠EFD的角平分線交于點P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∵∠PHK=∠HPK,∴∠PKG=2∠HPK.又∵GH⊥EG,∴∠KPG=90°?∠PKG=90°?2∠HPK.∴∠EPK=180°?∠KPG=90°+2∠HPK.∵PQ平分∠EPK,∴∠QPK=∠EPK=45°+∠HPK.∴∠HPQ=∠QPK?∠HPK=45°.∴∠HPQ的大小不發(fā)生變化.【點睛】本題考查了平行線的判定和性質(zhì)、余角和補角,解決本題的關鍵是綜合運用角平分線的定義、平行線的性質(zhì)、余角和補角.7.(1)(2)(3)②是正確的,證明見解析【分析】(1)過點G作GE∥AB,然后利用平行線性質(zhì)即可得到結果;(2)分別過G和H作GE∥AB,F(xiàn)H∥AB,然后利用平行線的性質(zhì)得到對應的邊角解析:(1)(2)(3)②是正確的,證明見解析【分析】(1)過點G作GE∥AB,然后利用平行線性質(zhì)即可得到結果;(2)分別過G和H作GE∥AB,F(xiàn)H∥AB,然后利用平行線的性質(zhì)得到對應的邊角關系,進而∠MHN的具體值;(3)根據(jù)角平分線性質(zhì),設,然后利用平行線的基本性質(zhì),分別推導出和的值即可判斷.【詳解】(1)如圖所示,過點作,∵,,∴,∴,,∴,∵,∴,∴.(2)如圖所示,過點作,過點作,∵,∴,∴,,∴,∵,∴,∵平分,平分,∴,,∴,∵,∴,,∴.(3)如圖所示,∵,∴,∵平分,∴,∴,∴,∵平分,∴,設,則,∴,∴,,∴②中的值為定值.故②是正確的.【點睛】本題主要考查了平行線的性質(zhì),做題的關鍵是能夠找到輔助線,構造輔助線.8.(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0【分析】(1)①根據(jù)題干中的等式直接計算即可;②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DO解析:(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0【分析】(1)①根據(jù)題干中的等式直接計算即可;②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE,代入計算即可;(2)①同理可得∠BO1C=∠BOC-∠OBO1-∠OCO1,代入計算可得;②同理可得∠BO7C=∠BOC-(∠BOC-∠A),代入計算即可;③利用∠ADB=180°-(∠ABD+∠BAD)=180°-(∠BOC-∠C)計算可得;④根據(jù)兩個凹四邊形ABOD和ABOC得到兩個等式,聯(lián)立可得結論.【詳解】解:(1)①∠BOC=∠A+∠B+∠C=60°+20°+30°=110°;②∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE=2×130°=260°;(2)①∠BO1C=∠BOC-∠OBO1-∠OCO1=∠BOC-(∠ABO+∠ACO)=∠BOC-(∠BOC-∠A)=∠BOC-(120°-50°)=120°-35°=85°;②∠BO7C=∠BOC-(∠BOC-∠A)=120°-(120°-50°)=120°-10°=110°;③∠ADB=180°-(∠ABD+∠BAD)=180°-(∠BOC-∠C)=180°-(120°-44°)=142°;④∠BOD=∠BOC=∠B+∠D+∠BAC,∠BOC=∠B+∠C+∠BAC,聯(lián)立得:∠B-∠C+2∠D=0.【點睛】本題主要考查了新定義—箭頭四角形,利用了三角形外角的性質(zhì),還考查了角平分線的定義,圖形類規(guī)律,解題的關鍵是理解箭頭四角形,并能熟練運用其性質(zhì).9.(1)∠APB=∠NAP+∠HBP;(2)見解析;(3)∠HBP=∠NAP+∠APB【分析】(1)過P點作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(2)過P點作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解析:(1)∠APB=∠NAP+∠HBP;(2)見解析;(3)∠HBP=∠NAP+∠APB【分析】(1)過P點作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(2)過P點作PQ∥GH,根據(jù)平行線的性質(zhì)即可求解;(3)根據(jù)平行線的性質(zhì)和三角形外角的性質(zhì)即可求解.【詳解】解:(1)如圖①,過P點作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP,故答案為:∠APB=∠NAP+∠HBP;(2)如圖②,過P點作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如備用圖,∵MN∥GH,∴∠PEN=∠HBP,∵∠PEN=∠NAP+∠APB,∴∠HBP=∠NAP+∠APB.故答案為:∠HBP=∠NAP+∠APB.【點睛】此題考查了平行公理的推論:平行于同一條直線的兩直線平行,以及平行線的性質(zhì):兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論