強化訓練-人教版8年級數(shù)學上冊《全等三角形》章節(jié)訓練試卷(含答案詳解版)_第1頁
強化訓練-人教版8年級數(shù)學上冊《全等三角形》章節(jié)訓練試卷(含答案詳解版)_第2頁
強化訓練-人教版8年級數(shù)學上冊《全等三角形》章節(jié)訓練試卷(含答案詳解版)_第3頁
強化訓練-人教版8年級數(shù)學上冊《全等三角形》章節(jié)訓練試卷(含答案詳解版)_第4頁
強化訓練-人教版8年級數(shù)學上冊《全等三角形》章節(jié)訓練試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版8年級數(shù)學上冊《全等三角形》章節(jié)訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,把沿線段折疊,使點落在點處;若,,,則的度數(shù)為(

)A. B. C. D.2、若△ABC≌△DEF,且△ABC的周長為20,AB=5,BC=8,則DF長為(

)A.5 B.8 C.7 D.5或83、如圖,點O是△ABC中∠BCA,∠ABC的平分線的交點,已知△ABC的面積是12,周長是8,則點O到邊BC的距離是(

)A.1 B.2C.3 D.44、如圖,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,則∠EAC的度數(shù)為()A.40° B.30° C.35° D.25°5、如圖,在和中,,,,線段BC的延長線交DE于點F,連接AF.若,,,則線段EF的長度為(

)A.4 B. C.5 D.6、如圖,在△ABC中,∠C=90°,O為△ABC的三條角平分線的交點,OD⊥BC,OE⊥AC,OF⊥AB,點D、E、F分別是垂足,且AB=10cm,BC=8cm,CA=6cm,則點O到邊AB的距離為(

)A.2cm B.3cm C.4cm D.5cm7、如圖給出了四組三角形,其中全等的三角形有(

)組.A.1 B.2 C.3 D.48、如圖,在中,,的平分線交于點E,于點D,若的周長為12,,則的周長為(

)A.9 B.8 C.7 D.69、如圖,在中,點D是BC邊上一點,已知,,CE平分交AB于點E,連接DE,則的度數(shù)為(

)A. B. C. D.10、如圖,在△ABC和△DEF中,已知AB=DE,BC=EF,根據(jù)(SAS)判定△ABC≌△DEF,還需的條件是()A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三個均可以第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,平分,.填空:因為平分,所以________.從而________.因此________.2、如圖,△ABC中,∠ACB=90°,AC=12,BC=16.點P從A點出發(fā)沿A—C—B路徑向終點運動,終點為B點;點Q從B點出發(fā)沿B—C—A路徑向終點運動,終點為A點.點P和Q分別以2和6的運動速度同時開始運動,兩點都要到相應(yīng)的終點時才能停止運動,在某時刻,分別過P和Q作PE⊥l于E,QF⊥l于F.若要△PEC與△QFC全等,則點P的運動時間為_______.3、如圖所示,點在一塊直角三角板上(其中),于點,于點,若,則_________度.4、如圖是教科書中的一個片段,由畫圖我們可以得到△,判定這兩個三角形全等的依據(jù)是__.(1)畫;(2)分別以點,為圓心,線段,長為半徑畫弧,兩弧相交于點;(3)連接線段,.5、如圖,點B,E,C,F(xiàn)在一條直線上,AB∥DF,AB=DF,若△ABC≌△DFE,則需添加的條件是________.(填一個即可)6、在△ABC中,∠C=90°,AD是△ABC的角平分線,BC=6、AC=8、AB=10,則點D到AB的距離為_______.7、如圖,在中,、的平分線相交于點I,且,若,則的度數(shù)為______度.8、如圖,已知,,,則等于________.9、如圖,在△ABC中,AD⊥BC于點D,過A作AEBC,且AE=AB,AB上有一點F,連接EF.若EF=AC,CD=4BD,則=_____.10、如圖,已知∠1=∠2、AD=AB,若再增加一個條件不一定能使結(jié)論成立,則這個條件是_____.三、解答題(5小題,每小題6分,共計30分)1、如圖,D是△ABC的邊AC上一點,點E在AC的延長線上,ED=AC,過點E作EF∥AB,并截取EF=AB,連接DF.求證:DF=CB.2、小明和小亮在學習探索三角形全等時,碰到如下一題:如圖1,若AC=AD,BC=BD,則△ACB與△ADB有怎樣的關(guān)系?(1)請你幫他們解答,并說明理由.(2)細心的小明在解答的過程中,發(fā)現(xiàn)如果在AB上任取一點E,連接CE、DE,則有CE=DE,你知道為什么嗎?(如圖2)(3)小亮在小明說出理由后,提出如果在AB的延長線上任取一點P,也有第2題類似的結(jié)論.請你幫他畫出圖形,并證明結(jié)論.3、小明的學習過程中,對教材中的一個有趣問題做如下探究:(1)【習題回顧】已知:如圖1,在中,,是角平分線,是高,相交于點.求證:;(2)【變式思考】如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點,其反向延長線與邊的延長線交于點,若,求和的度數(shù);(3)【探究延伸】如圖3,在中,在上存在一點,使得,角平分線交于點.的外角的平分線所在直線與的延長線交于點.若,求的度數(shù).4、如圖,點A,F(xiàn),E,D在一條直線上,AF=DE,CF∥BE,AB∥CD.求證BE=CF.5、如圖所示,在三角形ABC中,,,作的平分線與AC交于點E,求證:.-參考答案-一、單選題1、C【解析】【分析】由于折疊,可得三角形全等,運用三角形全等得出,利用平行線的性質(zhì)可得出則即可求.【詳解】解:∵沿線段折疊,使點落在點處,∴,∴,∵,,∴,∵,∴,∴,故選:C.【考點】本題考查了全等三角形的性質(zhì)及三角形內(nèi)角和定理、平行線的性質(zhì);解題的關(guān)鍵是,理解折疊就是得到全等的三角形,根據(jù)全等三角形的對應(yīng)角相等就可以解決.2、C【解析】【分析】根據(jù)三角形的周長可得AC長,然后再利用全等三角形的性質(zhì)可得DF長.【詳解】∵△ABC的周長為20,AB=5,BC=8,∴AC=20?5?8=7,∵△ABC≌△DEF,∴DF=AC=7,故選C.【考點】此題主要考查了全等三角形的性質(zhì),關(guān)鍵是掌握全等三角形的對應(yīng)邊相等.3、C【解析】【分析】過點O作OE⊥AB于E,OF⊥AC于F,連接OA,根據(jù)角平分線的性質(zhì)得:OE=OF=OD然后根據(jù)△ABC的面積是12,周長是8,即可得出點O到邊BC的距離.【詳解】如圖,過點O作OE⊥AB于E,OF⊥AC于F,連接OA.∵點O是∠ABC,∠ACB平分線的交點,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=AB·OE+BC·OD+AC·OF=×OD×(AB+BC+AC)=×OD×8=12OD=3故選:C【考點】此題主要考查了角平分線的性質(zhì)以及三角形面積求法,角的平分線上的點到角的兩邊的距離相等,正確表示出三角形面積是解題關(guān)鍵.4、C【解析】【分析】根據(jù)三角形的內(nèi)角和定理列式求出∠BAC,再根據(jù)全等三角形對應(yīng)角相等可得∠DAE=∠BAC,然后根據(jù)∠EAC=∠DAE-∠DAC代入數(shù)據(jù)進行計算即可得解.【詳解】解:∵∠B=80°,∠C=30°,∴∠BAC=180°-80°-30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE-∠DAC,=70°-35°,=35°.故選C.【考點】本題考查了全等三角形對應(yīng)角相等的性質(zhì),熟記性質(zhì)并準確識圖是解題的關(guān)鍵.5、B【解析】【分析】證明,,根據(jù)全等三角形對應(yīng)邊相等,得到,,由解得,繼而解得,最后由解答.【詳解】解:,,,,,,故選:B.【考點】本題考查全等三角形的判定與性質(zhì)、線段的和差等知識,是重要考點,掌握相關(guān)知識是解題關(guān)鍵.6、A【解析】【分析】根據(jù)角平分線的性質(zhì)得到OE=OF=OD,設(shè)OE=x,然后利用三角形面積公式得到S△ABC=S△OAB+S△OAC+S△OCB,于是可得到關(guān)于x的方程,從而可得到OF的長度.【詳解】解:∵點O為△ABC的三條角平分線的交點,∴OE=OF=OD,設(shè)OE=x,∵S△ABC=S△OAB+S△OAC+S△OCB,∴∴5x+3x+4x=24,∴x=2,∴點O到AB的距離等于2.故選:A.【考點】本題考查了角平分線的性質(zhì):角平分線上的點到這個角兩邊的距離相等,面積法的應(yīng)用是解題的關(guān)鍵.7、D【解析】【詳解】分析:根據(jù)全等三角形的判定解答即可.詳解:圖A可以利用AAS證明全等,圖B可以利用SAS證明全等,圖C可以利用SAS證明全等,圖D可以利用ASA證明全等..其中全等的三角形有4組,故選D.點睛:此題考查全等三角形的判定的應(yīng)用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,題目比較典型,難度適中.8、D【解析】【分析】通過證明得到、,的周長,即可求解.【詳解】解:∵平分∴,又∵∴又∵∴(AAS)∴、,的周長為,故選:D,【考點】此題考查了全等三角形的判定與性質(zhì),解題的關(guān)鍵是掌握全等三角形的判定方法與性質(zhì),以及線段之間的等量關(guān)系.9、B【解析】【分析】過點E作于M,于N,于H,如圖,先計算出,則AE平分,根據(jù)角平分線的性質(zhì)得,再由CE平分得到,則,于是根據(jù)角平分線定理的逆定理可判斷DE平分,再根據(jù)三角形外角性質(zhì)解答即可.【詳解】解:過點E作于M,于N,于H,如圖,∵,,∴,∴平分,∴,∵平分,∴,∴,∴平分,∴,∵由三角形外角可得:,,∴,而,∴.故選:B.【考點】本題考查了角平分線的性質(zhì)和判定定理,三角形的外角性質(zhì)定理,解決本題的關(guān)鍵是運用角平分線定理的逆定理證明DE平分.10、B【解析】【分析】根據(jù)三角形全等的判定中的SAS,即兩邊夾角.已知兩條邊相等,只需要它們的夾角相等即可.【詳解】要使兩三角形全等,已知AB=DE,BC=EF,要用SAS判斷,還差夾角,即∠B=∠E.故選:B.【考點】本題考查了三角形全等的判定方法.三角形全等的判定是中考的熱點,一般以考查三角形全等的方法為主.二、填空題1、

【解析】【分析】由AC平分∠DAB,∠1=∠2,可得出∠CAB=∠2,由內(nèi)錯角相等可以得出兩直線平行.【詳解】解:∵AC平分∠DAB,∴∠1=∠CAB.又∵∠1=∠2,∴∠CAB=∠2,∴ABDC(內(nèi)錯角相等,兩直線平行).故答案為:∠CAB,∠CAB,DC.【考點】本題考查了平行線的判定定理以及角平分線的定義,解題的關(guān)鍵是找出∠CAB=∠2.解決該類題型只需牢牢掌握平行線的判定定理即可.2、1或3.5或12【解析】【分析】分4種情況求解:①P在AC上,Q在BC上,推出方程6-t=8-3t,②P、Q都在AC上,此時P、Q重合,得到方程6-t=3t-8,Q在AC上,③P在BC上,Q在AC時,此時不存在,④當Q到A點,與A重合,P在BC上時.【詳解】解:∵△PEC與△QFC全等,∴斜邊CP=CQ,有四種情況:①P在AC上,Q在BC上,,CP=12-2t,CQ=16-6t,∴12-2t=16-6t,∴t=1;②P、Q都在AC上,此時P、Q重合,∴CP=12-2t=6t-16,∴t=3.5;③P到BC上,Q在AC時,此時不存在;理由是:28÷6=,12÷2=6,即Q在AC上運動時,P點也在AC上運動;④當Q到A點(和A重合),P在BC上時,∵CP=CQ=AC=12.CP=12-2t,∴2t-12=12,∴t=12符合題意;答:點P運動1或3.5或12時,△PEC與△QFC全等.【考點】本題主要考查對全等三角形的性質(zhì),解一元一次方程等知識點的理解和掌握,能根據(jù)題意得出方程是解此題的關(guān)鍵.3、15【解析】【分析】根據(jù),,判斷OB是的角平分線,即可求解.【詳解】解:由題意,,,,即點O到BC、AB的距離相等,∴OB是的角平分線,∵,∴.故答案為:15.【考點】本題考查角平分線的定義及判定,熟練掌握“到一個角的兩邊距離相等的點在這個角的平分線上”是解題的關(guān)鍵.4、【解析】【分析】根據(jù)全等三角形的判定方法解決問題即可.【詳解】解:在和△中,,,故答案為:.【考點】本題考查了作圖?復雜作圖,全等三角形的判定等知識,解題的關(guān)鍵是理解題意,靈活應(yīng)用所學知識解決問題.5、∠A=∠D或∠ACB=∠DEF或AC∥DE或BC=FE或BE=FC【解析】【分析】先根據(jù)已知條件推得∠B=∠F,加上AB=DF,要證△ABC≌△DFE,只需要根據(jù)全等三角形的判定方法添加適當?shù)慕呛瓦吋纯桑驹斀狻拷猓骸逜B∥DF,∴,添加∠A=∠D,在和中,∴;添加∠ACB=∠DEF,在和中,∴;添加AC∥DE,∵AC∥DE,∴∠ACB=∠DEF,在和中,∴;添加BC=FE,在和中,∴;添加BE=FC,∵BE=FC,∴,∴,在和中,∴,綜上可得,添加∠A=∠D或∠ACB=∠DEF或AC∥DE或BC=FE或BE=FC都可得到△ABC≌△DFE.故答案為:∠A=∠D或∠ACB=∠DEF或AC∥DE或BC=FE或BE=FC【考點】本題考查三角形全等的判定方法,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.6、或【解析】【分析】作DE⊥AB于E,如圖,先根據(jù)勾股定理計算出BC=8,再利用角平分線的性質(zhì)得到DE=DC,設(shè)DE=DC=x,利用面積法得到10x=6(8-x),然后解方程即可.【詳解】解:作DE⊥AB于E,如圖,∵AD是△ABC的一條角平分線,DC⊥AC,DE⊥AB,∴DE=DC,設(shè)DE=DC=x,S△ABD=DE?AB=AC?BD,即10x=8(6-x),解得x=,即點D到AB邊的距離為.故答案為:.【考點】本題考查了角平分線的性質(zhì):角的平分線上的點到角的兩邊的距離相等,由已知能夠注意到D到AB的距離即為DE長是解決的關(guān)鍵.7、70【解析】【分析】在BC上取點D,令,利用SAS定理證明得到,,再利用得到,所以,再由角平分線可得,利用以及AI平分可知.【詳解】解:在BC上取點D,令,連接DI,BI,如下圖所示:∵CI平分∴在和中∴∴,∵∴,即:∵AI平分、CI平分,∴BI平分,∴∵∴故答案為:70.【考點】本題考查角平分線,全等三角形的判定及性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,利用,在BC上取點D等于AC,作出輔助線是解本題的關(guān)鍵點,也是難點.8、【解析】【分析】根據(jù)提示可找到一組公共邊OP,從而根據(jù)SSS判定△POB≌△POA,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.【詳解】在和中,∵,,,,故答案為40°.【考點】本題考查了全等三角形的判定及性質(zhì),熟練掌握基本的性質(zhì)和判定是正確解題的關(guān)鍵.9、【解析】【分析】在CD上取一點G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點H,先證明△AEH≌△GAD,得EH=AD,AH=GD,再證明Rt△EHF≌Rt△ADC,得FH=CD,于是得AF=GC,則,得S△AEF=S△GAC,設(shè)GD=BD=m,則CD=4BD=4m,所以CG=4m-m=3m,BC=4m+m=5m,則,,得,于是得到問題的答案.【詳解】解:如圖,在CD上取一點G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點H,∵AD⊥BC于點D,∴AG=AB,∠H=∠ADG=90°∴∠AGD=∠B,∵AE//BC,∴∠EAH=∠B,∴∠EAH=∠AGD,∵AE=AB,∴AE=AG,在△AEH和△GAD中,,∴△AEH≌△GAD(AAS),∴EH=AD,AH=GD,在Rt△EHF和Rt△ADC中,,∴Rt△EHF≌Rt△ADC(HL),∴FH=CD,∴FH-AH=CD-GD,∴AF=GC,∴,∴S△AEF=S△GAC,設(shè)GD=BD=m,則CD=4BD=4m,∴CG=4m-m=3m,BC=4m+m=5m,∴,∴,故答案為:.【考點】此題考查平行線的性質(zhì)、全等三角形的判定與性質(zhì)、有關(guān)面積比問題的求解等知識與方法,正確地作出所需要的輔助線是解題的關(guān)鍵.10、DE=BC【解析】【分析】根據(jù)題目中的條件可以得到,再增加條件則不一定成立,從而可以解答本題.【詳解】增加的條件為理由:∵∴∴∵∴不一定成立故答案為:.【考點】本題考查了三角形全等的判定定理,熟記并靈活運用各種判定方法是解題關(guān)鍵.三、解答題1、證明過程見解析【解析】【分析】根據(jù)EF∥AB,得到,再根據(jù)已知條件證明,即可得解;【詳解】∵EF∥AB,∴,在和中,,∴,∴;【考點】本題主要考查了全等三角形的判定與性質(zhì),準確分析判斷是解題的關(guān)鍵.2、(1),理由見解析;(2)見解析;(3)見解析【解析】【分析】(1)根據(jù)全等三角形的判定定理證得;(2)由(1)中的全等三角形的對應(yīng)角相等證得,則由全等三角形的判定定理證得,則對應(yīng)邊;(3)同(2),利用全等三角形的對應(yīng)邊相等證得結(jié)論.【詳解】解:(1),理由如下:如圖1,在與中,,;(2)如圖2,由(1)知,,則.在與中,,,;(3)如圖3,.理由同(2),,則.【考點】本題考查了全等三角形的判定與性質(zhì).在應(yīng)用全等三角形的判定時,要注意三角形間的公共邊和公共角,必要時添加適當輔助線構(gòu)造三角形.3、(1)見解析;(2)25°,25°;(3)55°【解析】【分析】(1)由余角的性質(zhì)可得∠B=∠ACD,由角平分線的性質(zhì)和外角的性質(zhì)可得結(jié)論;(2)由三角形內(nèi)角和定理可求∠GAF=130°,由角平分線的性質(zhì)可求∠GAF=65°,由余角的性質(zhì)可求解;(3)由平角的性質(zhì)和角平分線的性質(zhì)可求∠EAN=90°,由外角的性質(zhì)可求解.(1)證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;(2)解:∵∠B=40°,∠ACB=9

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論