考點(diǎn)攻克人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》同步測(cè)試試卷(含答案解析)_第1頁(yè)
考點(diǎn)攻克人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》同步測(cè)試試卷(含答案解析)_第2頁(yè)
考點(diǎn)攻克人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》同步測(cè)試試卷(含答案解析)_第3頁(yè)
考點(diǎn)攻克人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》同步測(cè)試試卷(含答案解析)_第4頁(yè)
考點(diǎn)攻克人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》同步測(cè)試試卷(含答案解析)_第5頁(yè)
已閱讀5頁(yè),還剩26頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》同步測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,矩形ABCD中,對(duì)角線AC的垂直平分線EF分別交BC,AD于點(diǎn)E,F(xiàn),若BE=3,AF=5,則AC的長(zhǎng)為(

)A. B. C.10 D.82、如圖,已知,,,則的長(zhǎng)為(

)A.7 B.3.5 C.3 D.23、如圖為了測(cè)量B點(diǎn)到河對(duì)面的目標(biāo)A之間的距離,在B點(diǎn)同側(cè)選擇了一點(diǎn)C,測(cè)得∠ABC=65°,∠ACB=35°,然后在M處立了標(biāo)桿,使∠MBC=65°,∠MCB=35°,得到△MBC≌△ABC,所以測(cè)得MB的長(zhǎng)就是A,B兩點(diǎn)間的距離,這里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA4、如圖,在△ABC和△DEF中,已知AB=DE,BC=EF,根據(jù)(SAS)判定△ABC≌△DEF,還需的條件是()A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三個(gè)均可以5、下列語(yǔ)句中正確的是()A.斜邊和一銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等B.有兩邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等C.有兩個(gè)角對(duì)應(yīng)相等的兩個(gè)直角三角形全等D.有一直角邊和一銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等6、如圖,在中,的平分線交于點(diǎn)D,DE//AB,交于點(diǎn)E,于點(diǎn)F,,則下列結(jié)論錯(cuò)誤的是(

)A. B. C. D.7、下列選項(xiàng)中表示兩個(gè)全等圖形的是()A.形狀相同的兩個(gè)圖形 B.能夠完全重合的兩個(gè)圖形C.面積相等的兩個(gè)圖形 D.周長(zhǎng)相等的兩個(gè)圖形8、如圖,已知,則圖中全等三角形的總對(duì)數(shù)是A.3 B.4 C.5 D.69、已知,如圖,在△ABC中,D為BC邊上的一點(diǎn),延長(zhǎng)AD到點(diǎn)E,連接BE、CE,∠ABD+∠3=90°,∠1=∠2=∠3,下列結(jié)論:①△ABD為等腰三角形;②AE=AC;③BE=CE=CD;④CB平分∠ACE.其中正確的結(jié)論個(gè)數(shù)有(

)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)10、如圖,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M,連接OM,下列結(jié)論:①△AOC≌△BOD;②AC=BD;③∠AMB=40°;④MO平分∠BMC.其中正確的個(gè)數(shù)為()A.4 B.3 C.2 D.1第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,在平面直角坐標(biāo)系中,將沿軸向右平移后得到,點(diǎn)A的坐標(biāo)為,點(diǎn)A的對(duì)應(yīng)點(diǎn)在直線上,點(diǎn)在的角平分線上,若四邊形的面積為4,則點(diǎn)的坐標(biāo)為_(kāi)_______.2、在△ABC中,AB=4,AC=3,AD是△ABC的角平分線,則△ABD與△ACD的面積之比是_____.3、如圖,已知,,添加一個(gè)條件,使,你添加的條件是______(填一個(gè)即可).4、如圖,在中,按以下步驟作圖:①以點(diǎn)B為圓心,任意長(zhǎng)為半徑作弧,分別交AB、BC于點(diǎn)D、E.②分別以點(diǎn)D、E為圓心,大于的同樣長(zhǎng)為半徑作弧,兩弧交于點(diǎn)F.③作射線BF交AC于點(diǎn)G.如果,,的面積為18,則的面積為_(kāi)_______.5、如圖,在△ABC中,AD⊥BC于點(diǎn)D,過(guò)A作AEBC,且AE=AB,AB上有一點(diǎn)F,連接EF.若EF=AC,CD=4BD,則=_____.6、如圖,AD,BE是的兩條高線,只需添加一個(gè)條件即可證明(不添加其它字母及輔助線),這個(gè)條件可以是______(寫(xiě)出一個(gè)即可).7、已知∠AOB=60°,OC是∠AOB的平分線,點(diǎn)D為OC上一點(diǎn),過(guò)D作直線DE⊥OA,垂足為點(diǎn)E,且直線DE交OB于點(diǎn)F,如圖所示.若DE=2,則DF=_____.8、在△ABC中,AB=5,BC邊上的中線AD=4,則AC的長(zhǎng)m的取值范圍是_______.9、如圖,AB⊥BC于B,DC⊥BC于C,AB=6,BC=8,CD=2,點(diǎn)P為BC邊上一動(dòng)點(diǎn),當(dāng)BP=________時(shí),形成的Rt△ABP與Rt△PCD全等.10、如圖所示,在中,∠B=90°,AD平分∠BAC,交BC于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E,若BD=3,則DE的長(zhǎng)為_(kāi)_______.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.求證:BC=DE.2、如圖所示,在三角形ABC中,,,作的平分線與AC交于點(diǎn)E,求證:.3、如圖,∠A=∠D=90°,AC=DB,AC、DB相交于點(diǎn)O.求證:OB=OC.4、如圖,點(diǎn)B、C、D在同一直線上,△ABC、△ADE是等邊三角形,CE=5,CD=2(1)證明:△ABD≌△ACE;(2)求∠ECD的度數(shù);(3)求AC的長(zhǎng).5、如圖,已知在中,,,求證:.-參考答案-一、單選題1、A【解析】【分析】連接AE,由線段垂直平分線的性質(zhì)得出OA=OC,AE=CE,證明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【詳解】解:如圖,連結(jié)AE,設(shè)AC交EF于O,依題意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因?yàn)镋F為線段AC的中垂線,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【考點(diǎn)】本題考查了全等三角形的判定、勾股定理,熟練掌握是解題的關(guān)鍵.2、C【解析】【分析】利用全等三角形的性質(zhì)求解即可.【詳解】解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故選C.【考點(diǎn)】本題主要考查了全等三角形的性質(zhì),熟知全等三角形對(duì)應(yīng)邊相等是解題的關(guān)鍵.3、D【解析】【分析】利用全等三角形的判定方法進(jìn)行分析即可.【詳解】解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故選:D.【考點(diǎn)】本題考查了全等三角形的應(yīng)用,熟練掌握三角形全等的判定定理是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)三角形全等的判定中的SAS,即兩邊夾角.已知兩條邊相等,只需要它們的夾角相等即可.【詳解】要使兩三角形全等,已知AB=DE,BC=EF,要用SAS判斷,還差?yuàn)A角,即∠B=∠E.故選:B.【考點(diǎn)】本題考查了三角形全等的判定方法.三角形全等的判定是中考的熱點(diǎn),一般以考查三角形全等的方法為主.5、A【解析】【分析】根據(jù)全等三角形的判定定理,用排除法以每一個(gè)選項(xiàng)進(jìn)行分析從而確定最終答案.【詳解】A、正確,利用AAS來(lái)判定全等;B、不正確,兩邊的位置不確定,不一定全等;C、不正確,兩個(gè)三角形不一定全等;D、不正確,有一直角邊和一銳角對(duì)應(yīng)相等不一定能推出兩直角三角形全等,沒(méi)有相關(guān)判定方法對(duì)應(yīng).故選A【考點(diǎn)】本題考核知識(shí)點(diǎn):全等三角形的判定.解題關(guān)鍵點(diǎn):熟記全等三角形的相關(guān)判定.6、A【解析】【分析】根據(jù)角平分線的性質(zhì)得到CD=DF=3,故B正確;根據(jù)平行線的性質(zhì)及角平分線得到AE=DE=5,故C正確;由此判斷D正確;再證明△BDF≌△DEC,求出BF=CD=3,故A錯(cuò)誤.【詳解】解:在中,的平分線交于點(diǎn)D,,∴CD=DF=3,故B正確;∵DE=5,∴CE=4,∵DE//AB,∴∠ADE=∠DAF,∵∠CAD=∠BAD,∴∠CAD=∠ADE,∴AE=DE=5,故C正確;∴AC=AE+CE=9,故D正確;∵∠B=∠CDE,∠BFD=∠C=90°,CD=DF,∴△BDF≌△DEC,

∴BF=CD=3,故A錯(cuò)誤;故選:A.【考點(diǎn)】此題考查了角平分線的性質(zhì)定理,平行線的性質(zhì),等邊對(duì)等角證明角相等,全等三角形的判定及性質(zhì),熟記各知識(shí)點(diǎn)并綜合應(yīng)用是解題的關(guān)鍵.7、B【解析】【分析】利用全等圖形的定義分析即可.【詳解】A、形狀相同的兩個(gè)圖形,不一定是全等圖形,故此選項(xiàng)錯(cuò)誤;B、能夠完全重合的兩個(gè)圖形,一定是全等圖形,故此選項(xiàng)正確;C、面積相等的兩個(gè)圖形,不一定是全等圖形,故此選項(xiàng)錯(cuò)誤;D、周長(zhǎng)相等的兩個(gè)圖形,不一定是全等圖形,故此選項(xiàng)錯(cuò)誤;故選B.【考點(diǎn)】此題主要考查了全等圖形,正確把握全等圖形的定義是解題關(guān)鍵.8、D【解析】【分析】根據(jù)全等三角形的判定方法進(jìn)行判斷.全等三角形的5種判定方法中,選用哪一種方法,取決于題目中的已知條件.【詳解】解:∵AB∥DC,AD∥BC,∴∠DAC=∠BCA,∠CDB=∠ABD,∠DCA=∠BAC,∠ADB=∠CBD,又∵BE=DF,∴由∠ADB=∠CBD,DB=BD,∠ABD=∠CDB,可得△ABD≌△CDB;由∠DAC=∠BCA,AC=CA,∠DCA=∠BAC,可得△ACD≌△CAB;∴AO=CO,DO=BO,由∠DAO=∠BCO,AO=CO,∠AOD=∠COB,可得△AOD≌△COB;由∠CDB=∠ABD,∠COD=∠AOB,CO=AO,可得△COD≌△AOB;由∠DCA=∠BAC,∠COF=∠AOE,CO=AO,可得△AOE≌△COF;由∠CDB=∠ABD,∠DOF=∠BOE,DO=BO,可得△DOF≌△BOE;故選D.【考點(diǎn)】本題主要考查了全等三角形的判定與性質(zhì)的運(yùn)用,解題時(shí)注意:若已知兩邊對(duì)應(yīng)相等,則找它們的夾角或第三邊;若已知兩角對(duì)應(yīng)相等,則必須再找一組對(duì)邊對(duì)應(yīng)相等,或者是兩角的夾邊,若已知一邊一角,則找另一組角,或找這個(gè)角的另一組對(duì)應(yīng)鄰邊.9、C【解析】【分析】作AF平分∠BAD.可根據(jù)證△ABF≌△ADF,推出AB=AD,得出△ABD為等腰三角形;可根據(jù)同弦所對(duì)的圓周角相等知點(diǎn)A、B、C、E共圓,可判出BE=CE=CD,根據(jù)三角形內(nèi)角和等于180°,可判出AE=AC;求出∠7=90°﹣∠2,根據(jù)∠1=∠4=∠2推出∠4≠∠7,即可得出BC不是∠ACE的平分線.【詳解】解:作AF平分∠BAD,∵∠BAD=∠3,∠ABD+∠3=90°,∴∠BAF=∠3=∠DAF,∴∠ABF+∠BAF=90°∴∠AFB=∠AFD=90°,在△BAF和△DAF中∴△ABF≌△ADF(ASA),∴AB=AD,故①正確;∵AE=AC,∴∠6=∠4+∠7==90°?,∵∠5=∠ADB=∠ABD==90°?,∠1=∠2,∴∠5=∠6=90°?∴CE=CD,∠4=180°?∠5?∠6=180°?2(90°?)=∠1,∵∠1=∠3,∴∠4=∠3,∴BE=CE,∴BE=CE=CD,∴③正確;∵∠6+∠2+∠ACE=180°,∠6=∠5=∠ADB=∠ABD=90°﹣∠2.∴∠ACE=180°﹣∠6﹣∠2=90°﹣∠2,∴∠ACE=∠6,∴AE=CE,故②正確∵∠5=∠2+∠7=90°﹣∠2,∴∠7=90°﹣∠2,∵∠BAD=∠4=∠2,∴∠4≠∠7,故④錯(cuò)誤;故選C.【考點(diǎn)】本題主要考查了全等三角形的判定和性質(zhì)、同弦所對(duì)的圓周角相等、三角形內(nèi)角和的相關(guān)知識(shí),靈活運(yùn)用所學(xué)知識(shí)是解題的關(guān)鍵.10、A【解析】【分析】由題意易得∠AOC=∠BOD,然后根據(jù)三角形全等的性質(zhì)及角平分線的判定定理可進(jìn)行求解.【詳解】解:∵∠AOB=∠COD=40°,∠AOD是公共角,∴∠COD+∠AOD=∠BOA+∠AOD,即∠AOC=∠BOD,∵OA=OB,OC=OD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∠ODB=∠OCA,故①②正確;過(guò)點(diǎn)O作OE⊥AC于點(diǎn)E,OF⊥BD于點(diǎn)F,BD與OA相交于點(diǎn)H,如圖所示:∵∠AHM=∠OHB,∠AMB=180°-∠AHM-∠OAC,∠BOA=180°-∠OHB-∠OBD,∴∠AMB=∠BOA=40°,∴∠OEC=∠OFD=90°,∵OC=OD,∠OCA=∠ODB,∴△OEC≌△OFD(AAS),∴OE=OF,∴OM平分∠BMC,故③④正確;所以正確的個(gè)數(shù)有4個(gè);故選A.【考點(diǎn)】本題主要考查全等三角形的性質(zhì)與判定及角平分線的判定定理,熟練掌握全等三角形的性質(zhì)與判定及角平分線的判定定理是解題的關(guān)鍵.二、填空題1、【解析】【分析】先求出點(diǎn)坐標(biāo),由此可知平移的距離,根據(jù)四邊形的面積為4,可求出點(diǎn)坐標(biāo)和平移的方向、距離,則可求B′點(diǎn)坐標(biāo).【詳解】解:∵沿軸向右平移后得到,∴點(diǎn)與點(diǎn)是縱坐標(biāo)相同,是4,把代入中,得到,∴點(diǎn)坐標(biāo)為(4,4),∴點(diǎn)是沿軸向右平移4個(gè)單位,過(guò)點(diǎn)作,,∵點(diǎn)在的角平分線上,且,四邊形的面積為4,∴∴∴∴點(diǎn)坐標(biāo)為(1,3),根據(jù)平移的性質(zhì)可知點(diǎn)B也是向右平移4個(gè)單位得到.∵點(diǎn)(1,3),∴B′(5,3).故答案為:(5,3).【考點(diǎn)】本題主要考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、平移性質(zhì),通過(guò)求平移后的坐標(biāo)得到平移的距離是解決本題的的關(guān)鍵.2、4:3【解析】【分析】根據(jù)角平分線的性質(zhì),可得出△ABD的邊AB上的高與△ACD的AC上的高相等,估計(jì)三角形的面積公式,即可得出△ABD與△ACD的面積之比等于對(duì)應(yīng)邊之比.【詳解】∵AD是△ABC的角平分線,∴設(shè)△ABD的邊AB上的高與△ACD的AC上的高分別為h1,h2,∴h1=h2,∴△ABD與△ACD的面積之比=AB:AC=4:3,故答案為4:3.3、(答案不唯一)【解析】【分析】此題是一道開(kāi)放型的題目,答案不唯一,先根據(jù)∠BCE=∠ACD求出∠BCA=∠DCE,再根據(jù)全等三角形的判定定理SAS推出即可.【詳解】解:添加的條件是CB=CE,理由是:∵∠BCE=∠ACD,∴∠BCE+∠ECA=∠ACD+∠ECA,∴∠BCA=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),故答案為:CB=CE(答案不唯一).【考點(diǎn)】本題考查了全等三角形的判定定理,能熟記全等三角形的判定定理是解此題的關(guān)鍵,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,兩直角三角形全等還有HL等.4、27【解析】【分析】由作圖步驟可知BG為∠ABC的角平分線,過(guò)G作GH⊥BC,GM⊥AB,可得GM=GH,然后再結(jié)合已知條件和三角形的面積公式求得GH,最后運(yùn)用三角形的面積公式解答即可.【詳解】解:由作圖作法可知:BG為∠ABC的角平分線過(guò)G作GH⊥BC,GM⊥AB∴GM=GH∴,故答案為27.【考點(diǎn)】本題考查了角平分線定理和三角形面積公式的應(yīng)用,通過(guò)作法發(fā)現(xiàn)角平分線并靈活應(yīng)用角平分線定理是解答本題的關(guān)鍵.5、【解析】【分析】在CD上取一點(diǎn)G,使GD=BD,連接AG,作EH⊥AB交BA的延長(zhǎng)線于點(diǎn)H,先證明△AEH≌△GAD,得EH=AD,AH=GD,再證明Rt△EHF≌Rt△ADC,得FH=CD,于是得AF=GC,則,得S△AEF=S△GAC,設(shè)GD=BD=m,則CD=4BD=4m,所以CG=4m-m=3m,BC=4m+m=5m,則,,得,于是得到問(wèn)題的答案.【詳解】解:如圖,在CD上取一點(diǎn)G,使GD=BD,連接AG,作EH⊥AB交BA的延長(zhǎng)線于點(diǎn)H,∵AD⊥BC于點(diǎn)D,∴AG=AB,∠H=∠ADG=90°∴∠AGD=∠B,∵AE//BC,∴∠EAH=∠B,∴∠EAH=∠AGD,∵AE=AB,∴AE=AG,在△AEH和△GAD中,,∴△AEH≌△GAD(AAS),∴EH=AD,AH=GD,在Rt△EHF和Rt△ADC中,,∴Rt△EHF≌Rt△ADC(HL),∴FH=CD,∴FH-AH=CD-GD,∴AF=GC,∴,∴S△AEF=S△GAC,設(shè)GD=BD=m,則CD=4BD=4m,∴CG=4m-m=3m,BC=4m+m=5m,∴,∴,故答案為:.【考點(diǎn)】此題考查平行線的性質(zhì)、全等三角形的判定與性質(zhì)、有關(guān)面積比問(wèn)題的求解等知識(shí)與方法,正確地作出所需要的輔助線是解題的關(guān)鍵.6、(答案不唯一)【解析】【分析】根據(jù)已知條件可知,故只要添加一條邊相等即可證明.【詳解】解:添加,AD,BE是的兩條高線,,在與中,.故答案為:(答案不唯一).【考點(diǎn)】本題考查了三角形全等的判定,掌握三角形全等的判定是解題的關(guān)鍵.7、4.【解析】【分析】過(guò)點(diǎn)D作DM⊥OB,垂足為M,則DM=DE=2,在Rt△OEF中,利用三角形內(nèi)角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所對(duì)的直角邊等于斜邊的一半可求出DF的長(zhǎng),此題得解.【詳解】過(guò)點(diǎn)D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案為4.【考點(diǎn)】本題考查了角平分線的性質(zhì)、三角形內(nèi)角和定理以及含30度角的直角三角形,利用角平分線的性質(zhì)及30°角所對(duì)的直角邊等于斜邊的一半,求出DF的長(zhǎng)是解題的關(guān)鍵.8、3<m<13【解析】【分析】延長(zhǎng)AD至E,使DE=AD=4,連接CE,利用SAS證明△ABD≌△ECD,可得CE=AB,再根據(jù)三角形的三邊的關(guān)系即可解決問(wèn)題.【詳解】解:如圖,延長(zhǎng)AD至E,使DE=AD=4,連接CE,∵AD是BC邊上的中線,∴BD=CD,在△ADB和△CDE中,,∴△ABD≌△ECD(SAS),∴CE=AB,在△ACE中,AE-CE<AC<AE+CE,∵CE=AB=5,AE=8,∴8-5<AC<8+5,∴3<AC<13,∴3<m<13.故答案為:3<m<13.【考點(diǎn)】此題考查了全等三角形的性質(zhì)與判定,三角形的三邊的關(guān)系,解題的關(guān)鍵是利用已知條件構(gòu)造全等三角形,然后利用三角形的三邊的關(guān)系解決問(wèn)題.9、2【解析】【分析】當(dāng)BP=2時(shí),Rt△ABP≌Rt△PCD,由BC=8可得CP=6,進(jìn)而可得AB=CP,BP=CD,再結(jié)合AB⊥BC、DC⊥BC可得∠B=∠C=90°,可利用SAS判定△ABP≌△PCD.【詳解】當(dāng)BP=2時(shí),Rt△ABP≌Rt△PCD.理由如下:∵BC=8,BP=2,∴PC=6,∴AB=PC.∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°.在△ABP和△PCD中,∵,∴△ABP≌△PCD(SAS).故答案為:2.【考點(diǎn)】本題考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解題的關(guān)鍵.注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角相等時(shí),角必須是兩邊的夾角.10、3【解析】【分析】根據(jù)角平分線的性質(zhì),即角平分線上任意一點(diǎn)到角兩邊的距離相等計(jì)算即可;【詳解】∵在中,∠B=90°,AD平分∠BAC,DE⊥AC,∴,∵,∴;故答案是3.【考點(diǎn)】本題主要考查了角平分線的性質(zhì)應(yīng)用,準(zhǔn)確計(jì)算是解題的關(guān)鍵.三、解答題1、證明見(jiàn)解析.【解析】【分析】根據(jù)ASA證明△ADE≌△ABC即可得到答案;【詳解】證明:∵∠1=∠2,∵∠DAC+∠1=∠2+∠DAC∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ADE≌△ABC(ASA)∴BC=DE,【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì):判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論