版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
試卷第=page22頁(yè),共=sectionpages11頁(yè)試卷第=page22頁(yè),共=sectionpages22頁(yè)人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》綜合練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,四邊形ABCD是平行四邊形,下列結(jié)論中錯(cuò)誤的是()A.當(dāng)?ABCD是矩形時(shí),∠ABC=90° B.當(dāng)?ABCD是菱形時(shí),AC⊥BDC.當(dāng)?ABCD是正方形時(shí),AC=BD D.當(dāng)?ABCD是菱形時(shí),AB=AC2、如圖,陰影部分是將一個(gè)菱形剪去一個(gè)平行四邊形后剩下的,要想知道陰影部分的周長(zhǎng),需要測(cè)量一些線段的長(zhǎng),這些線段可以是()A.AF B.AB C.AB與BC D.BC與CD3、如圖,正方形的面積為256,點(diǎn)F在上,點(diǎn)E在的延長(zhǎng)線上,的面積為200,則的長(zhǎng)為()A.10 B.11 C.12 D.154、已知三角形三邊長(zhǎng)分別為7cm,8cm,9cm,作三條中位線組成一個(gè)新的三角形,同樣方法作下去,一共做了五個(gè)新的三角形,則這五個(gè)新三角形的周長(zhǎng)之和為()A.46.5cm B.22.5cm C.23.25cm D.以上都不對(duì)5、如圖,平行四邊形ABCD的周長(zhǎng)為36,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)是()A.12 B.15 C.18 D.246、如圖,以O(shè)為圓心,長(zhǎng)為半徑畫(huà)弧別交于A、B兩點(diǎn),再分別以A、B為圓心,以長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)C,分別連接、,則四邊形一定是()A.梯形 B.菱形 C.矩形 D.正方形7、四邊形四條邊長(zhǎng)分別是a,b,c,d,其中a,b為對(duì)邊,且滿足,則這個(gè)四邊形是()A.任意四邊形 B.平行四邊形 C.對(duì)角線相等的四邊形 D.對(duì)角線垂直的四邊形8、如圖所示,正方形ABCD的面積為16,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則最小值為()A.2 B.3 C.4 D.69、如圖,在四邊形中,AB∥CD,添加下列一個(gè)條件后,一定能判定四邊形是平行四邊形的是()A. B. C. D.10、如圖,菱形ABCD的對(duì)角線AC、BD的長(zhǎng)分別為6和8,O為AC、BD的交點(diǎn),H為AB上的中點(diǎn),則OH的長(zhǎng)度為()A.3 B.4 C.2.5 D.5第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、正方形的對(duì)角線長(zhǎng)為cm,則它的周長(zhǎng)為_(kāi)_________cm.2、如圖,點(diǎn)E,F(xiàn)在正方形ABCD的對(duì)角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_(kāi)____.3、如圖,在平行四邊形ABCD中,AB=4,BC=5,以點(diǎn)C為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,交BC于點(diǎn)P,交CD于點(diǎn)Q,再分別以點(diǎn)P,Q為圓心,大于PQ的長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)N,射線CN交BA的延長(zhǎng)線于點(diǎn)E,則AE的長(zhǎng)是_____.4、在四邊形ABCD中,AB=BC=CD=DA=5cm,對(duì)角線AC,BD相交于點(diǎn)O,且AC=8cm,則四邊形ABCD的面積為_(kāi)_____cm2.5、如圖,正方形ABCD的面積為18,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為_(kāi)____.6、在直角墻角FOE中有張硬紙片正方形ABCD靠墻邊滑動(dòng),如圖所示,AD=2,A點(diǎn)沿墻往下滑動(dòng)到O點(diǎn)的過(guò)程中,正方形的中心點(diǎn)M到O的最小值是______.7、如圖,在矩形中,,,點(diǎn)是線段上的一點(diǎn)(不與點(diǎn),重合),將△沿折疊,使得點(diǎn)落在處,當(dāng)△為等腰三角形時(shí),的長(zhǎng)為_(kāi)__________.8、如圖,矩形ABCD中,AB=9,AD=12,點(diǎn)M在對(duì)角線BD上,點(diǎn)N為射線BC上一動(dòng)點(diǎn),連接MN,DN,且∠DNM=∠DBC,當(dāng)DMN是等腰三角形時(shí),線段BN的長(zhǎng)為_(kāi)__.9、如圖,在矩形ABCD中,AB=2,AD=2,E為BC邊上一動(dòng)點(diǎn),F(xiàn)、G為AD邊上兩個(gè)動(dòng)點(diǎn),且∠FEG=30°,則線段FG的長(zhǎng)度最大值為_(kāi)____.10、正方形ABCD的邊長(zhǎng)為4,則圖中陰影部分的面積為_(kāi)____.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,在平面直角坐標(biāo)系中,ΔABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1)、B(4,2)、C(3,5).(1)請(qǐng)畫(huà)出△ABC關(guān)于x軸的對(duì)稱圖形ΔA1B1C1;(2)借助網(wǎng)格,利用無(wú)刻度直尺畫(huà)出線段CD,使CD平分ΔABC的面積.(保留確定點(diǎn)D的痕跡).2、如圖所示,在△ABC中,AD是邊BC上的高,CE是邊AB上的中線,G是CE的中點(diǎn),AB=2CD,求證:DG⊥CE.
3、△ABC為等邊三角形,AB=4,AD⊥BC于點(diǎn)D,E為線段AD上一點(diǎn),AE=.以AE為邊在直線AD右側(cè)構(gòu)造等邊△AEF.連結(jié)CE,N為CE的中點(diǎn).
(1)如圖1,EF與AC交于點(diǎn)G,①連結(jié)NG,求線段NG的長(zhǎng);②連結(jié)ND,求∠DNG的大?。?)如圖2,將△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α.M為線段EF的中點(diǎn).連結(jié)DN、MN.當(dāng)30°<α<120°時(shí),猜想∠DNM的大小是否為定值,并證明你的結(jié)論.4、如圖,在中,,D是邊上的一點(diǎn),過(guò)D作交于點(diǎn)E,,連接交于點(diǎn)F.(1)求證:是的垂直平分線;(2)若點(diǎn)D為的中點(diǎn),且,求的長(zhǎng).5、如圖,在正方形中,是直線上的一點(diǎn),連接,過(guò)點(diǎn)作,交直線于點(diǎn),連接.(1)當(dāng)點(diǎn)在線段上時(shí),如圖①,求證:;(2)當(dāng)點(diǎn)在直線上移動(dòng)時(shí),位置如圖②、圖③所示,線段,與之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的猜想,不需證明.-參考答案-一、單選題1、D【解析】【分析】由矩形的四個(gè)角是直角可判斷A,由菱形的對(duì)角線互相垂直可判斷B,由正方形的對(duì)角線相等可判斷C,由菱形的四條邊相等可判斷D,從而可得答案.【詳解】解:當(dāng)?ABCD是矩形時(shí),∠ABC=90°,正確,故A不符合題意;當(dāng)?ABCD是菱形時(shí),AC⊥BD,正確,故B不符合題意;當(dāng)?ABCD是正方形時(shí),AC=BD,正確,故C不符合題意;當(dāng)?ABCD是菱形時(shí),AB=BC,故D符合題意;故選D【點(diǎn)睛】本題考查的是矩形,菱形,正方形的性質(zhì),熟練的記憶矩形,菱形,正方形的性質(zhì)是解本題的關(guān)鍵.2、A【解析】【分析】如圖,延長(zhǎng),交于點(diǎn),證明,,再利用菱形的性質(zhì)證明:陰影部分的周長(zhǎng),從而可得答案.【詳解】解:如圖,延長(zhǎng),交于點(diǎn),四邊形是平行四邊形,,,四邊形是菱形,,陰影部分的周長(zhǎng),故需要測(cè)量的長(zhǎng)度,故選A.【點(diǎn)睛】本題考查的是平行四邊形的性質(zhì),菱形的性質(zhì),證明陰影部分的周長(zhǎng)是解本題的關(guān)鍵.3、C【解析】【分析】先證明Rt△CDF≌Rt△CBE,故CE=CF,根據(jù)△CEF的面積計(jì)算CE,根據(jù)正方形ABCD的面積計(jì)算BC,根據(jù)勾股定理計(jì)算BE.【詳解】解:∵∠ECF=90°,∠DCB=90°,∴∠BCE=∠DCF,∴,∴△CDF≌△CBE,故CF=CE.因?yàn)镽t△CEF的面積是200,即?CE?CF=200,故CE=20,正方形ABCD的面積=BC2=256,得BC=16.根據(jù)勾股定理得:BE==12.故選:C.【點(diǎn)睛】本題考查了正方形,等腰直角三角形面積的計(jì)算,考查了直角三角形中勾股定理的運(yùn)用,本題中求證CF=CE是解題的關(guān)鍵.4、C【解析】【分析】如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,則,,,即可得到△DEF的周長(zhǎng),由此即可求出其他四個(gè)新三角形的周長(zhǎng),最后求和即可.【詳解】解:如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,∴,,,∴△DEF的周長(zhǎng),同理可得:△GHI的周長(zhǎng),∴第三次作中位線得到的三角形周長(zhǎng)為,∴第四次作中位線得到的三角形周長(zhǎng)為∴第三次作中位線得到的三角形周長(zhǎng)為∴這五個(gè)新三角形的周長(zhǎng)之和為,故選C.【點(diǎn)睛】本題主要考查了三角形中位線定理,解題的關(guān)鍵在于能夠熟練掌握三角形中位線定理.5、B【解析】【分析】根據(jù)平行四邊形的對(duì)邊相等和對(duì)角線互相平分可得,OB=OD,又因?yàn)镋點(diǎn)是CD的中點(diǎn),可得OE是△BCD的中位線,可得OE=BC,所以易求△DOE的周長(zhǎng).【詳解】解:∵?ABCD的周長(zhǎng)為36,∴2(BC+CD)=36,則BC+CD=18.∵四邊形ABCD是平行四邊形,對(duì)角線AC,BD相交于點(diǎn)O,BD=12,∴OD=OB=BD=6.又∵點(diǎn)E是CD的中點(diǎn),∴OE是△BCD的中位線,DE=CD,∴OE=BC,∴△DOE的周長(zhǎng)=OD+OE+DE=BD+(BC+CD)=6+9=15,故選:B.【點(diǎn)睛】本題考查了三角形中位線定理、平行四邊形的性質(zhì).解題時(shí),利用了“平行四邊形對(duì)角線互相平分”、“平行四邊形的對(duì)邊相等”的性質(zhì).6、B【解析】【分析】根據(jù)題意得到,然后根據(jù)菱形的判定方法求解即可.【詳解】解:由題意可得:,∴四邊形是菱形.故選:B.【點(diǎn)睛】此題考查了菱形的判定,解題的關(guān)鍵是熟練掌握菱形的判定方法.菱形的判定定理:①四條邊都相等四邊形是菱形;②一組鄰邊相等的平行四邊形是菱形;③對(duì)角線垂直的平行四邊形是菱形.7、B【解析】【分析】根據(jù)完全平方公式分解因式得到a=b,c=d,利用邊的位置關(guān)系得到該四邊形的形狀.【詳解】解:,,,,∴a=b,c=d,∵四邊形四條邊長(zhǎng)分別是a,b,c,d,其中a,b為對(duì)邊,∴c、d是對(duì)邊,∴該四邊形是平行四邊形,故選:B.【點(diǎn)睛】此題考查了完全平方公式分解因式,平行四邊形的判定方法,熟練掌握完全平方公式分解因式是解題的關(guān)鍵.8、C【解析】【分析】先求得正方形的邊長(zhǎng),依據(jù)等邊三角形的定義可知BE=AB=4,連接BP,依據(jù)正方形的對(duì)稱性可知PB=PD,則PE+PD=PE+BP.由兩點(diǎn)之間線段最短可知:當(dāng)點(diǎn)B、P、E在一條直線上時(shí),PE+PD有最小值,最小值為BE的長(zhǎng).【詳解】解:連接BP.∵四邊形ABCD為正方形,面積為16,∴正方形的邊長(zhǎng)為4.∵△ABE為等邊三角形,∴BE=AB=4.∵四邊形ABCD為正方形,∴△ABP與△ADP關(guān)于AC對(duì)稱.∴BP=DP.∴PE+PD=PE+BP.由兩點(diǎn)之間線段最短可知:當(dāng)點(diǎn)B、P、E在一條直線上時(shí),PE+PD有最小值,最小值=BE=4.故選:C.【點(diǎn)睛】本題考查的是等邊三角形的性質(zhì)、正方形的性質(zhì)和軸對(duì)稱—最短路線問(wèn)題,熟知“兩點(diǎn)之間,線段最短”是解答此題的關(guān)鍵.9、C【解析】【分析】由平行線的性質(zhì)得,再由,得,證出,即可得出結(jié)論.【詳解】解:一定能判定四邊形是平行四邊形的是,理由如下:,,,,,又,四邊形是平行四邊形,故選:C.【點(diǎn)睛】本題考查了平行四邊形的判定,解題的關(guān)鍵是熟練掌握平行四邊形的判定,證明出.10、C【解析】【分析】根據(jù)菱形的性質(zhì)求得邊長(zhǎng),進(jìn)而根據(jù)三角形中位線定理求得的長(zhǎng)度.【詳解】∵四邊形ABCD是菱形,∴AO=OC,OB=OD,AO⊥BO,又∵點(diǎn)H是AD中點(diǎn),∴OH是△DAB的中位線,在Rt△AOB中,AB5,則OHAB=2.5故選C【點(diǎn)睛】本題考查了菱形的性質(zhì),三角形中位線定理,求得的長(zhǎng)是解題的關(guān)鍵.二、填空題1、16【解析】【分析】根據(jù)正方形對(duì)角線的長(zhǎng),可將正方形的邊長(zhǎng)求出,進(jìn)而可將正方形的周長(zhǎng)求出.【詳解】解:設(shè)正方形的邊長(zhǎng)為x,∵正方形的對(duì)角線長(zhǎng)為cm,∴,解得:x=4,∴正方形的邊長(zhǎng)為:4(cm),∴正方形的周長(zhǎng)為4×4=16(cm).故答案為:16.【點(diǎn)睛】本題考查了正方形的性質(zhì),勾股定理,解決本題的關(guān)鍵是掌握正方形的性質(zhì).2、20【解析】【分析】連接BD,交AC于O,根據(jù)題意和正方形的性質(zhì)可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),熟練掌握正方形的對(duì)角線相等且互相垂直平分是解題的關(guān)鍵.3、1【解析】【分析】根據(jù)基本作圖,得到EC是∠BCD的平分線,由AB∥CD,得到∠BEC=∠ECD=∠ECB,從而得到BE=BC,利用線段差計(jì)算即可.【詳解】根據(jù)基本作圖,得到EC是∠BCD的平分線,∴∠ECD=∠ECB,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠BEC=∠ECD,∴∠BEC=∠ECB,∴BE=BC=5,∴AE=BE-AB=5-4=1,故答案為:1.【點(diǎn)睛】本題考查了角的平分線的尺規(guī)作圖,等腰三角形的判定,平行線的性質(zhì),平行四邊形的性質(zhì),熟練掌握尺規(guī)作圖,靈活運(yùn)用等腰三角形的判定定理是解題的關(guān)鍵.4、24【解析】【分析】根據(jù)題意作圖,得出四邊形為菱形,再根據(jù)菱形的性質(zhì)進(jìn)行求解面積即可.【詳解】解:根據(jù)題意作圖如下:由題意得四邊形為菱形,,且平分,,,由勾股定理:,,,故答案為:24.【點(diǎn)睛】本題考查了菱形的判定及形,勾股定理,解題的關(guān)鍵是判斷四邊形是菱形.5、【解析】【分析】由正方形的對(duì)稱性可知,PB=PD,當(dāng)B、P、E共線時(shí)PD+PE最小,求出BE即可.【詳解】解:∵正方形中B與D關(guān)于AC對(duì)稱,∴PB=PD,∴PD+PE=PB+PE=BE,此時(shí)PD+PE最小,∵正方形ABCD的面積為18,△ABE是等邊三角形,∴BE=3,∴PD+PE最小值是3,故答案為:3.【點(diǎn)睛】本題考查軸對(duì)稱求最短距離,熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.6、2【解析】【分析】取的中點(diǎn)為,連接,根據(jù)直角三角形的性質(zhì)求出OG和MG的長(zhǎng),然后根據(jù)兩點(diǎn)之間線段最短即可求解.【詳解】解:取的中點(diǎn)為,連接,為正方形,,,為中點(diǎn),,又為直角三角形,,的軌跡是以為圓心的圓弧,最小值為當(dāng)三點(diǎn)共線時(shí),即,故答案為:2.【點(diǎn)睛】本題考查了正方形的性質(zhì),直角三角形斜邊的中線等于斜邊的一半,以及兩點(diǎn)之間線段最短等知識(shí),正確作出輔助線是解答本題的關(guān)鍵.7、或【解析】【分析】根據(jù)題意分,,三種情況討論,構(gòu)造直角三角形,利用勾股定理解決問(wèn)題.【詳解】解:∵四邊形是矩形∴,∵將△沿折疊,使得點(diǎn)落在處,∴,,設(shè),則①當(dāng)時(shí),如圖過(guò)點(diǎn)作,則四邊形為矩形,在中在中即解得②當(dāng)時(shí),如圖,設(shè)交于點(diǎn),設(shè)垂直平分在中即在中,即聯(lián)立,解得③當(dāng)時(shí),如圖,又垂直平分垂直平分此時(shí)重合,不符合題意綜上所述,或故答案為:或【點(diǎn)睛】本題考查了矩形的性質(zhì),勾股定理,等腰三角形的性質(zhì)與判定,垂直平分線的性質(zhì),分類討論是解題的關(guān)鍵.8、15或24或【解析】【分析】分三種情形討論求解即可.【詳解】解:①如圖1中,當(dāng)NM=ND時(shí),∴∠NDM=∠NMD,∵∠MND=∠CBD,∴∠BDN=∠BND,∴BD=BN==15;②如圖2中,當(dāng)DM=DN時(shí),此時(shí)M與B重合,∴BC=CN=12,∴BN=24;③如圖3中,當(dāng)MN=MD時(shí),∴∠NDM=∠MND,∵∠MND=∠CBD,∴∠NDM=∠MND=∠CBD,∴BN=DN,設(shè)BN=DN=x,在Rt△DNC中,∵DN2=CN2+CD2,∴x2=(12-x)2+92,∴x=,綜上,當(dāng)DMN是等腰三角形時(shí),線段BN的長(zhǎng)為15或24或.故答案為:15或24或.【點(diǎn)睛】本題考查了矩形的性質(zhì)、等腰三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類討論的思想思考問(wèn)題,注意不能漏解.9、【解析】【分析】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形,故當(dāng)E與B點(diǎn)或C點(diǎn)重合,G與D點(diǎn)重合或F與A點(diǎn)重合時(shí),F(xiàn)G的長(zhǎng)度最大,則由矩形ABCD中,AB=2,AD=2可知,∠ABD=60°,故∠ABF=60°-30°=30°,則AF=,則FG=AD-AF=.【詳解】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形故當(dāng)E與B點(diǎn)或C點(diǎn)重合,G與D點(diǎn)重合或F與A點(diǎn)重合時(shí),F(xiàn)G的長(zhǎng)度最大∵矩形ABCD中,AB=2,AD=2∴∠ABD=60°∴∠ABF=60°-30°=30°∴AF=∴FG=AD-AF=.故答案為:.【點(diǎn)睛】本題考查了四邊形中動(dòng)點(diǎn)問(wèn)題,圖解法數(shù)學(xué)思想依據(jù)是數(shù)形結(jié)合思想.它的應(yīng)用能使復(fù)雜問(wèn)題簡(jiǎn)單化、抽象問(wèn)題具體化.特殊四邊形的幾何問(wèn)題,很多困難源于問(wèn)題中的可動(dòng)點(diǎn).如何合理運(yùn)用各動(dòng)點(diǎn)之間的關(guān)系,同學(xué)們往往缺乏思路,常常導(dǎo)致思維混亂.實(shí)際上求解特殊四邊形的動(dòng)點(diǎn)問(wèn)題,關(guān)鍵是是利用圖解法抓住它運(yùn)動(dòng)中的某一瞬間,尋找合理的代數(shù)關(guān)系式,確定運(yùn)動(dòng)變化過(guò)程中的數(shù)量關(guān)系,圖形位置關(guān)系,分類畫(huà)出符合題設(shè)條件的圖形進(jìn)行討論,就能找到解決的途徑,有效避免思維混亂.10、8【解析】【分析】正方形的對(duì)角線是它的一條對(duì)稱軸,對(duì)應(yīng)點(diǎn)到兩邊的都是垂直的,距離也都相等,左邊梯形面積和右邊梯形面積相等,所以圖中陰影部分的面積正好為正方形面積的一半.然后列式進(jìn)行計(jì)算即可得解.【詳解】解:由圖形可得:S=×4×4=8,所以陰影部分的面積為8.故答案是:8.【點(diǎn)睛】本題考查正方形的性質(zhì),軸對(duì)稱的性質(zhì),將陰影面積轉(zhuǎn)化為三角形面積是解題的關(guān)鍵,學(xué)會(huì)于轉(zhuǎn)化的思想思考問(wèn)題.三、解答題1、(1)見(jiàn)解析;(2)見(jiàn)解析;【分析】(1)根據(jù)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)變化作圖即可;(2)利用格點(diǎn)特征以及矩形對(duì)角線互相平分且相等的性質(zhì)取中點(diǎn)從而求解.【詳解】解:(1)如圖所示,ΔA1B1C1即為所求,(2)連接格點(diǎn),交于點(diǎn),已知、為矩形的對(duì)角線,連接,根據(jù)矩形的性質(zhì)可得點(diǎn)為線段的中點(diǎn),即為所求.【點(diǎn)睛】本題考查了網(wǎng)格作圖中的軸對(duì)稱變換和矩形的性質(zhì),解題的關(guān)鍵是掌握并運(yùn)用相關(guān)性質(zhì)進(jìn)行求解.2、見(jiàn)解析【分析】連接DE,根據(jù)直角三角形的性質(zhì)得到DE=AB,再根據(jù)AB=2CD,得到CD=AB,從而可得CD=DE,根據(jù)等腰三角形的三線合一證明即可.【詳解】證明:連接DE,如圖:
∵AD是邊BC上的高,CE是邊AB上的中線,∴AD⊥BD,E是AB的中點(diǎn),∴DE=AB,∵AB=2CD,∴CD=AB,∴CD=DE,∵G是CE的中點(diǎn),∴DG⊥CE.【點(diǎn)睛】本題考查了直角三角形的性質(zhì)、等腰三角形的判定和性質(zhì).解題的關(guān)鍵是掌握直角三角形的性質(zhì)、等腰三角形的判定和性質(zhì),明確在直角三角形中,斜邊上的中線等于斜邊的一半.3、(1)①;②;(2)的大小是定值,證明見(jiàn)解析.【分析】(1)①先根據(jù)等邊三角形的性質(zhì)、勾股定理可得,從而可得,再利用勾股定理可得,然后根據(jù)等邊三角形的性質(zhì)可得,最后根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可得;②先根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再根據(jù)等腰三角形的性質(zhì)可得,從而可得,然后根據(jù)四邊形的內(nèi)角和即可得;(2)連接,先證出,根據(jù)全等三角形的性質(zhì)可得,從而可得,再根據(jù)三角形中位線定理可得,然后根據(jù)三角形的外角性質(zhì)、角的和差即可得出結(jié)論.【詳解】解:(1)①∵是等邊三角形,,,∴,∴,∵,∴,∴,∵是等邊三角形,,,∴,即,又∵點(diǎn)為的中點(diǎn),∴;②如圖,連接,由(1)①知,,∵,點(diǎn)為的中點(diǎn),∴,,,∴;(2)的大小是定值,證明如下:如圖,連接,∵和都是等邊三角形,∴,∴,即,在和中,,∴,∴,∵,∴,∵點(diǎn)為的中點(diǎn),點(diǎn)為的中點(diǎn),∴,∴,∵,即點(diǎn)是的中點(diǎn),∴,∴,∵,∴,∴的大小為定值.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半、三角形中位線定理等知識(shí)點(diǎn),較難的是題(2),通過(guò)作輔助線,構(gòu)造全等三角形和利用到三角形中位線定理是解題關(guān)鍵.4、(1)見(jiàn)解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 畫(huà)冊(cè)設(shè)計(jì)合同范本
- 何為效的協(xié)議書(shū)
- 工程合同了結(jié)協(xié)議
- 代理簽定協(xié)議書(shū)
- 合伙買(mǎi)船協(xié)議書(shū)
- 代理出兌協(xié)議書(shū)
- 代辦案件協(xié)議書(shū)
- 醫(yī)美服務(wù)協(xié)議書(shū)
- 床墊定制合同范本
- 醫(yī)院易合同范本
- 2025江蘇南通軌道交通集團(tuán)有限公司運(yùn)營(yíng)分公司招聘40人備考筆試題庫(kù)及答案解析
- 貴州國(guó)企招聘:2025貴州錦麟化工有限責(zé)任公司第三次招聘7人考試題庫(kù)附答案
- 2025年華醫(yī)網(wǎng)醫(yī)學(xué)繼續(xù)教育抗菌藥物臨床應(yīng)用原則試題及答案
- 詐騙退款協(xié)議書(shū)范本
- 統(tǒng)編版五年級(jí)上冊(cè)習(xí)作 我想對(duì)您說(shuō) 教學(xué)課件
- 2025年度校長(zhǎng)述職報(bào)告:守正中求變用心辦好這所“小而美”的學(xué)校
- 2026陜西西安市延長(zhǎng)石油(集團(tuán))有限責(zé)任公司高校畢業(yè)生招聘(公共基礎(chǔ)知識(shí))綜合能力測(cè)試題附答案解析
- 國(guó)開(kāi)電大《11192,11657高層建筑施工》期末答題庫(kù)(機(jī)考字紙考)排序版
- 內(nèi)蒙古自治區(qū)行政執(zhí)法人員招聘筆試真題2024
- 2025甘肅省水務(wù)投資集團(tuán)有限公司招聘企業(yè)管理人員筆試考試參考題庫(kù)及答案解析
- 美容店退股合同協(xié)議書(shū)
評(píng)論
0/150
提交評(píng)論