版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版9年級(jí)數(shù)學(xué)上冊(cè)【旋轉(zhuǎn)】重點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,已知正方形的邊長(zhǎng)為3,點(diǎn)E是邊上一動(dòng)點(diǎn),連接,將繞點(diǎn)E順時(shí)針旋轉(zhuǎn)到,連接,則當(dāng)之和取最小值時(shí),的周長(zhǎng)為(
)A. B. C. D.2、小明把一副三角板按如圖所示疊放在一起,固定三角板ABC,將另一塊三角板DEF繞公共頂點(diǎn)B順時(shí)針旋轉(zhuǎn)(旋轉(zhuǎn)角度不超過180°).若兩塊三角板有一邊平行,則三角板DEF旋轉(zhuǎn)的度數(shù)可能是(
)A.15°或45° B.15°或45°或90°C.45°或90°或135° D.15°或45°或90°或135°3、如圖,在△ABC中,AB=AC,若M是BC邊上任意一點(diǎn),將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△ACN,點(diǎn)M的對(duì)應(yīng)點(diǎn)為點(diǎn)N,連接MN,則下列結(jié)論一定正確的是(
)A. B. C. D.4、已知點(diǎn)P坐標(biāo)為,將線段OP繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段,則點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(
)A. B. C. D.5、下列四個(gè)圖形中,中心對(duì)稱圖形是(
)A. B. C. D.6、如圖,在平面直角坐標(biāo)系中,已知點(diǎn)P(0,2),點(diǎn)A(4,2).以點(diǎn)P為旋轉(zhuǎn)中心,把點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)60°,得點(diǎn)B.在,,,四個(gè)點(diǎn)中,直線PB經(jīng)過的點(diǎn)是(
)A. B. C. D.7、有下列說法:①平行四邊形具有四邊形的所有性質(zhì):②平行四邊形是中心對(duì)稱圖形:③平行四邊形的任一條對(duì)角線可把平行四邊形分成兩個(gè)全等的三角形;④平行四邊形的兩條對(duì)角線把平行四邊形分成4個(gè)面積相等的小三角形.其中正確說法的序號(hào)是(
).A.①②④ B.①③④ C.①②③ D.①②③④8、如圖,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,使點(diǎn)的對(duì)應(yīng)點(diǎn)恰好落在邊上,點(diǎn)的對(duì)應(yīng)點(diǎn)為,連接.下列結(jié)論一定正確的是(
)A. B. C. D.9、下面四個(gè)手機(jī)應(yīng)用圖標(biāo)中是軸對(duì)稱圖形的是(
)A. B. C. D.10、下列圖形中,是中心對(duì)稱圖形的是()A. B.C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,把△ABC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADE,連接BE,CD,M是BE的中點(diǎn),若AM=,則CD的長(zhǎng)為_______.2、如圖,正方形的邊長(zhǎng)為2,將正方形繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得到正方形,連接,當(dāng)點(diǎn)恰好落在直線上時(shí),線段的長(zhǎng)度是______3、如圖,將n個(gè)邊長(zhǎng)都為1cm的正方形按如圖所示擺放,點(diǎn)A1,A2,…,An分別是正方形的中心,則n個(gè)正方形重疊形成的重疊部分的面積和為________4、以水平數(shù)軸的原點(diǎn)為圓心過正半軸上的每一刻度點(diǎn)畫同心圓,將逆時(shí)針依次旋轉(zhuǎn)、、、、得到條射線,構(gòu)成如圖所示的“圓”坐標(biāo)系,點(diǎn)、的坐標(biāo)分別表示為、,則點(diǎn)的坐標(biāo)表示為_______.5、點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則點(diǎn)的坐標(biāo)是_________.6、如圖,在平面直角坐標(biāo)系中,點(diǎn)C的坐標(biāo)為(﹣1,0),點(diǎn)A的坐標(biāo)為(﹣3,3),將點(diǎn)A繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為___.7、在平面直角坐標(biāo)系中點(diǎn)M(2,﹣4)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為_____.8、如圖,將一個(gè)頂角為30°角的等腰△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一個(gè)角度α(0<α<180°)得到△AB'C′,使得點(diǎn)B′、A、C在同一條直線上,則α等于_____°.9、如圖,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△ADE,點(diǎn)C和點(diǎn)E是對(duì)應(yīng)點(diǎn),若∠CAE=90°,AB=1,則BD=_________.10、如圖,點(diǎn)P是邊長(zhǎng)為1的正方形ABCD的對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),點(diǎn)E是BC中點(diǎn),連接PE,并將PE繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)120°得到PF,連接EF,則EF的最小值是_________.三、解答題(6小題,每小題5分,共計(jì)30分)1、如圖,已知正方形點(diǎn)在邊上,以為邊在左側(cè)作正方形;以為鄰邊作平行四邊形連接.(1)判斷和的數(shù)量及位置關(guān)系,并說明理由;(2)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過程中,和的數(shù)量及位置關(guān)系是否發(fā)生變化?請(qǐng)說明理由.2、已知正方形ABCD,將線段BA繞點(diǎn)B旋轉(zhuǎn)(),得到線段BE,連接EA,EC.(1)如圖1,當(dāng)點(diǎn)E在正方形ABCD的內(nèi)部時(shí),若BE平分∠ABC,AB=4,則∠AEC=______°,四邊形ABCE的面積為______;(2)當(dāng)點(diǎn)E在正方形ABCD的外部時(shí),①在圖2中依題意補(bǔ)全圖形,并求∠AEC的度數(shù);②作∠EBC的平分線BF交EC于點(diǎn)G,交EA的延長(zhǎng)線于點(diǎn)F,連接CF.用等式表示線段AE,F(xiàn)B,F(xiàn)C之間的數(shù)量關(guān)系,并證明.3、如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)(2,0),點(diǎn)C是y軸上的動(dòng)點(diǎn),當(dāng)點(diǎn)C在y軸上移動(dòng)時(shí),始終保持是等邊三角形(點(diǎn)A、C、P按逆時(shí)針方向排列);當(dāng)點(diǎn)C移動(dòng)到O點(diǎn)時(shí),得到等邊三角形AOB(此時(shí)點(diǎn)P與點(diǎn)B重合).〖初步探究〗(1)點(diǎn)B的坐標(biāo)為;(2)點(diǎn)C在y軸上移動(dòng)過程中,當(dāng)?shù)冗吶切蜛CP的頂點(diǎn)P在第二象限時(shí),連接BP,求證:;〖深入探究〗(3)當(dāng)點(diǎn)C在y軸上移動(dòng)時(shí),點(diǎn)P也隨之運(yùn)動(dòng),探究點(diǎn)P在怎樣的圖形上運(yùn)動(dòng),請(qǐng)直接寫出結(jié)論,并求出這個(gè)圖形所對(duì)應(yīng)的函數(shù)表達(dá)式;〖拓展應(yīng)用〗(4)點(diǎn)C在y軸上移動(dòng)過程中,當(dāng)OP=OB時(shí),點(diǎn)C的坐標(biāo)為.4、如圖1,二次函數(shù)y=a(x+3)(x﹣4)的圖象交坐標(biāo)軸于點(diǎn)A,B(0,﹣2),點(diǎn)P為x軸上一動(dòng)點(diǎn).(1)求該二次函數(shù)的解析式;(2)過點(diǎn)P作PQ⊥x軸,分別交線段AB、拋物線于點(diǎn)Q,C,連接AC.若OP=1,求△ACQ的面積;(3)如圖2,連接PB,將線段PB繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PD.當(dāng)點(diǎn)D在拋物線上時(shí),求點(diǎn)D的坐標(biāo).5、如圖,在Rt△ABC中,∠BAC=90°,∠ACB=30°,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到△CDE,點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別是D、E,點(diǎn)F是邊BC中點(diǎn),連結(jié)AD、EF.(1)求證:△ACD是等邊三角形;(2)判斷AD與EF有怎樣的數(shù)量關(guān)系,并說明理由.6、如圖,P是等邊內(nèi)的一點(diǎn),且,將繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得到.(1)旋轉(zhuǎn)角為_____度;(2)求點(diǎn)P與點(diǎn)Q之間的距離;(3)求的度數(shù);(4)求的面積.-參考答案-一、單選題1、A【解析】【分析】連接BF,過點(diǎn)F作FG⊥AB交AB延長(zhǎng)線于點(diǎn)G,通過證明△AED≌△GFE(AAS),確定F點(diǎn)在BF的射線上運(yùn)動(dòng);作點(diǎn)C關(guān)于BF的對(duì)稱點(diǎn)C',由三角形全等得到∠CBF=45°,從而確定C'點(diǎn)在AB的延長(zhǎng)線上;當(dāng)D、F、C'三點(diǎn)共線時(shí),DF+CF=DC'最小,在Rt△ADC'中,AD=3,AC'=6,求出DC'=3即可.【詳解】解:連接BF,過點(diǎn)F作FG⊥AB交AB延長(zhǎng)線于點(diǎn)G,∵將ED繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°到EF,∴EF⊥DE,且EF=DE,∴△AED≌△GFE(AAS),∴FG=AE,∴F點(diǎn)在BF的射線上運(yùn)動(dòng),作點(diǎn)C關(guān)于BF的對(duì)稱點(diǎn)C',∵EG=DA,F(xiàn)G=AE,∴AE=BG,∴BG=FG,∴∠FBG=45°,∴∠CBF=45°,∴BF是∠CBC′的角平分線,即F點(diǎn)在∠CBC′的角平分線上運(yùn)動(dòng),∴C'點(diǎn)在AB的延長(zhǎng)線上,當(dāng)D、F、C'三點(diǎn)共線時(shí),DF+CF=DC'最小,在Rt△ADC'中,AD=3,AC'=6,∴DC'=3,∴DF+CF的最小值為3,∴此時(shí)的周長(zhǎng)為.故選:A.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),軸對(duì)稱求最短路徑;能夠?qū)⒕€段的和通過軸對(duì)稱轉(zhuǎn)化為共線線段是解題的關(guān)鍵.2、D【解析】【分析】分四種情況討論,由平行線的性質(zhì)和旋轉(zhuǎn)的性質(zhì)可求解.【詳解】解:設(shè)旋轉(zhuǎn)的度數(shù)為α,若DE∥AB,則∠E=∠ABE=90°,∴α=90°-30°-45°=15°,若BE∥AC,則∠ABE=180°-∠A=120°,∴α=120°-30°-45°=45°,若BD∥AC,則∠ACB=∠CBD=90°,∴α=90°,當(dāng)點(diǎn)C,點(diǎn)B,點(diǎn)E共線時(shí),∵∠ACB=∠DEB=90°,∴AC∥DE,∴α=180°-45°=135°,綜上三角板DEF旋轉(zhuǎn)的度數(shù)可能是15°或45°或90°或135°.故選:D【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),平行線的性質(zhì),利用分類討論思想解決問題是本題的關(guān)鍵.3、C【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì),對(duì)每個(gè)選項(xiàng)逐一判斷即可.【詳解】解:∵將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△ACN,∴△ABM≌△ACN,∴AB=AC,AM=AN,∴AB不一定等于AN,故選項(xiàng)A不符合題意;∵△ABM≌△ACN,∴∠ACN=∠B,而∠CAB不一定等于∠B,∴∠ACN不一定等于∠CAB,∴AB與CN不一定平行,故選項(xiàng)B不符合題意;∵△ABM≌△ACN,∴∠BAM=∠CAN,∠ACN=∠B,∴∠BAC=∠MAN,∵AM=AN,AB=AC,∴△ABC和△AMN都是等腰三角形,且頂角相等,∴∠B=∠AMN,∴∠AMN=∠ACN,故選項(xiàng)C符合題意;∵AM=AN,而AC不一定平分∠MAN,∴AC與MN不一定垂直,故選項(xiàng)D不符合題意;故選:C.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的判定與性質(zhì).旋轉(zhuǎn)變換是全等變換,利用旋轉(zhuǎn)不變性是解題的關(guān)鍵.4、B【解析】【分析】如圖,作軸于,軸于,證明,有,,進(jìn)而可得點(diǎn)坐標(biāo).【詳解】解:如圖,作軸于,軸于,∵,∴在和中∵∴∴,∴故選B.【考點(diǎn)】本題考查了繞原點(diǎn)旋轉(zhuǎn)90°的點(diǎn)坐標(biāo),三角形全等的判定與性質(zhì).解題的關(guān)鍵在于熟練掌握旋轉(zhuǎn)的性質(zhì).5、D【解析】【分析】根據(jù)中心對(duì)稱圖形的概念結(jié)合各圖形的特點(diǎn)求解.【詳解】解:A、不是中心對(duì)稱圖形,不符合題意;B、不是中心對(duì)稱圖形,不符合題意;C、不是中心對(duì)稱圖形,不符合題意;D、是中心對(duì)稱圖形,符合題意.故選:D.【考點(diǎn)】本題考查了中心對(duì)稱圖形與軸對(duì)稱圖形的概念.判斷中心對(duì)稱圖形是要尋找對(duì)稱中心,圖形旋轉(zhuǎn)180度后與原圖形重合.6、B【解析】【分析】根據(jù)含30°角的直角三角形的性質(zhì)可得B(2,2+2),利用待定系數(shù)法可得直線PB的解析式,依次將M1,M2,M3,M4四個(gè)點(diǎn)的一個(gè)坐標(biāo)代入y=x+2中可解答.【詳解】解:∵點(diǎn)A(4,2),點(diǎn)P(0,2),∴PA⊥y軸,PA=4,由旋轉(zhuǎn)得:∠APB=60°,AP=PB=4,如圖,過點(diǎn)B作BC⊥y軸于C,∴∠BPC=30°,∴BC=2,PC=2,∴B(2,2+2),設(shè)直線PB的解析式為:y=kx+b,則,∴,∴直線PB的解析式為:y=x+2,當(dāng)y=0時(shí),x+2=0,x=-,∴點(diǎn)M1(-,0)不在直線PB上,當(dāng)x=-時(shí),y=-3+2=1,∴M2(-,-1)在直線PB上,當(dāng)x=1時(shí),y=+2,∴M3(1,4)不在直線PB上,當(dāng)x=2時(shí),y=2+2,∴M4(2,)不在直線PB上.故選:B.【考點(diǎn)】本題考查的是圖形旋轉(zhuǎn)變換,待定系數(shù)法求一次函數(shù)的解析式,確定點(diǎn)B的坐標(biāo)是解本題的關(guān)鍵.7、D【解析】【分析】根據(jù)平行四邊形的性質(zhì)、中心對(duì)稱圖形的定義和全等三角形的判定進(jìn)行逐一判定即可.【詳解】解:∵平行四邊形是四邊形的一種,∴平行四邊形具有四邊形的所有性質(zhì),故①正確:∵平行四邊形繞其對(duì)角線的交點(diǎn)旋轉(zhuǎn)180度能夠與自身重合,∴平行四邊形是中心對(duì)稱圖形,故②正確:∵四邊形ABCD是平行四邊形,∴AD=BC,CD=AB,∠ADC=∠CBA∴△ADC≌△CBA(SAS)同理可以證明△ABD≌△CDB∴平行四邊形的任一條對(duì)角線可把平行四邊形分成兩個(gè)全等的三角形,故③正確;∵四邊形ABCD是平行四邊形,∴OA=OC,OD=OB,∴,,,∴,∴平行四邊形的兩條對(duì)角線把平行四邊形分成4個(gè)面積相等的小三角形,故④正確.故選D.【考點(diǎn)】本題主要考查了中心對(duì)稱圖形的定義,平行四邊形的性質(zhì),全等三角形的判定,三角形中線把面積分成相同的兩部分等等,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.8、D【解析】【分析】利用旋轉(zhuǎn)的性質(zhì)得AC=CD,BC=EC,∠ACD=∠BCE,所以選項(xiàng)A、C不一定正確再根據(jù)等腰三角形的性質(zhì)即可得出,所以選項(xiàng)D正確;再根據(jù)∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB判斷選項(xiàng)B不一定正確即可.【詳解】解:∵繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,∴AC=CD,BC=EC,∠ACD=∠BCE,∴∠A=∠CDA=;∠EBC=∠BEC=,∴選項(xiàng)A、C不一定正確,∴∠A=∠EBC,∴選項(xiàng)D正確.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=-∠ACB不一定等于,∴選項(xiàng)B不一定正確;故選D.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等腰三角形的性質(zhì).9、D【解析】【分析】分別根據(jù)軸對(duì)稱圖形與中心對(duì)稱圖形的性質(zhì)對(duì)各選項(xiàng)進(jìn)行逐一分析即可.【詳解】解:A、既不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B、是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C、既不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D、是軸對(duì)稱圖形,故本選項(xiàng)正確.故選D.【考點(diǎn)】本題考查的是軸對(duì)稱圖形,熟知軸對(duì)稱圖形是針對(duì)一個(gè)圖形而言的,是一種具有特殊性質(zhì)的圖形,被一條直線分割成的兩部分沿著對(duì)稱軸折疊時(shí),互相重合是解答此題的關(guān)鍵.10、C【解析】【分析】根據(jù)中心對(duì)稱圖形的概念對(duì)各選項(xiàng)分析判斷即可得解.【詳解】解:A、不是中心對(duì)稱圖形,故本選項(xiàng)不合題意;B、不是中心對(duì)稱圖形,故本選項(xiàng)不合題意;C、是中心對(duì)稱圖形,故本選項(xiàng)符合題意;D、不是中心對(duì)稱圖形,故本選項(xiàng)不合題意.故選:C.【考點(diǎn)】本題考查了中心對(duì)稱圖形的概念,中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后與原圖重合.二、填空題1、【解析】【分析】延長(zhǎng)AM到F,使AM=MF,連接BF,證△AEM≌△FBM,得AE=FB,∠AEM=∠FBM,△ABC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADE,得AB=AD,∠CAE=∠BAD=90°,再證AC=BF,∠CAD=∠ABF,得△BFA≌△ACD,即可得答案.【詳解】解:如上圖:延長(zhǎng)AM到F,使AM=MF,∵M(jìn)是BE的中點(diǎn),∴BM=EM,∵∠AME=∠FMB,∴△AEM≌△FBM,∴AE=FB,∠AEM=∠FBM,∵△ABC繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADE,∴AB=AD,AC=AE,∠CAE=∠BAD=90°,∴AC=BF,∠CAD=90°-∠EAD,∵∠ABF=∠ABM+∠FBM=∠ABM+∠AEM=180°-∠BAE=180°-(∠BAD+∠EAD)=180°-90°-∠EAD=90°-∠EAD,∴∠CAD=∠ABF,在△BFA和△ACD中,∴△BFA≌△ACD,∴FA=CD,∵AM=,∴CD=FA=2AM=2,故答案為:2.【考點(diǎn)】本題考查旋轉(zhuǎn)的性質(zhì),三角形全等的判定與性質(zhì),解題的關(guān)鍵是延長(zhǎng)AM到F,使AM=MF,證△BFA≌△ACD.2、或【解析】【分析】分當(dāng)點(diǎn)恰好落在線段的延長(zhǎng)線上時(shí),當(dāng)點(diǎn)恰好落在線段上時(shí),兩種情況討論求解即可.【詳解】解:如圖1所示,當(dāng)點(diǎn)恰好落在線段的延長(zhǎng)線上時(shí),連接OB,過點(diǎn)O作于E,∴,∵四邊形OABC和四邊形都是正方形,∴,∴∴,∴;如圖2所示,當(dāng)點(diǎn)恰好落在線段上時(shí),連接OB,過點(diǎn)O作于E,同理可求出,∴;綜上所述,或,故答案為:或.【考點(diǎn)】本題主要考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),勾股定理,正確畫出圖形作出輔助線是解題的關(guān)鍵.3、【解析】【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個(gè)正方形可得到一個(gè)陰影部分,則n個(gè)這樣的正方形重疊部分即為n-1陰影部分的和.【詳解】由題意可得陰影部分面積等于正方形面積的,即是,5個(gè)這樣的正方形重疊部分(陰影部分)的面積和為×4,n個(gè)這樣的正方形重疊部分(陰影部分)的面積和為×(n-1)=cm2.【考點(diǎn)】本題考查了正方形的性質(zhì),熟悉正方形的性質(zhì)是解題關(guān)鍵.4、【解析】【分析】根據(jù)同心圓的個(gè)數(shù)以及每條射線所形成的角度,以及A,B點(diǎn)坐標(biāo)特征找到規(guī)律,即可求得C點(diǎn)坐標(biāo).【詳解】解:圖中為5個(gè)同心圓,且每條射線與x軸所形成的角度已知,、的坐標(biāo)分別表示為、,根據(jù)點(diǎn)的特征,所以點(diǎn)的坐標(biāo)表示為;故答案為:.【考點(diǎn)】本題考查坐標(biāo)與旋轉(zhuǎn)的規(guī)律性問題,熟練掌握旋轉(zhuǎn)性質(zhì),并找到規(guī)律是解題的關(guān)鍵.5、(﹣2,﹣1).【解析】【分析】根據(jù)兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱時(shí),它們的坐標(biāo)符號(hào)相反可得答案.【詳解】∵點(diǎn)A(2,1)與點(diǎn)B關(guān)于原點(diǎn)對(duì)稱,∴點(diǎn)B的坐標(biāo)是(﹣2,﹣1),故答案為(﹣2,﹣1).【考點(diǎn)】本題考查了關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo).6、(2,2)【解析】【分析】過點(diǎn)A作AE⊥x軸于E,過點(diǎn)B作BF⊥x軸于F.利用全等三角形的性質(zhì)解決問題即可.【詳解】解:如圖,過點(diǎn)A作AE⊥x軸于E,過點(diǎn)B作BF⊥x軸于F.∵∠AEC=∠ACB=∠CFB=90°,∴∠ACE+∠BCF=90°,∠BCF+∠B=90°,∴∠ACE=∠B,在△AEC和△CFB中,,∴△AEC≌△CFB(AAS),∴AE=CF,EC=BF,∵A(﹣3,3),C(﹣1,0),∴AE=CF=3,OC=1,EC=BF=2,∴OF=CF﹣OC=2,∴B(2,2),故答案為:(2,2).【考點(diǎn)】本題考查坐標(biāo)與圖形變化﹣旋轉(zhuǎn),全等三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造全等三角形解決問題.7、【解析】【分析】根據(jù)在平面直角坐標(biāo)系中,若兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則這兩點(diǎn)的橫縱坐標(biāo)均互為相反數(shù),即可求解.【詳解】解:點(diǎn)M(2,﹣4)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為故答案為:【考點(diǎn)】本題主要考查了兩點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的特征,熟練掌握在平面直角坐標(biāo)系中,若兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,則這兩點(diǎn)的橫縱坐標(biāo)均互為相反數(shù)是解題的關(guān)鍵.8、105°【解析】【分析】由等腰三角形的性質(zhì)可求∠BAC=∠BCA=75°,由旋轉(zhuǎn)的性質(zhì)可求解.【詳解】解:∵∠B=30°,BC=AB,∴∠BAC=∠BCA=75°,∴∠BAB'=105°,∵將一個(gè)頂角為30°角的等腰△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一個(gè)角度α(0<α<180°)得到△AB'C′,∴∠BAB'=α=105°,故答案為:105.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),靈活運(yùn)用旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.9、【解析】【詳解】∵將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)的到△ADE,點(diǎn)C和點(diǎn)E是對(duì)應(yīng)點(diǎn),∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案為:.10、##【解析】【分析】當(dāng)EP⊥AC時(shí),EF有最小值,過點(diǎn)P作PM⊥EF于點(diǎn)M,由直角三角形的性質(zhì)求出PE的長(zhǎng),由旋轉(zhuǎn)的性質(zhì)得出PE=PF,∠EPF=120°,求出PM的長(zhǎng),則可得出答案.【詳解】解:如圖,當(dāng)EP⊥AC時(shí),EF有最小值,過點(diǎn)P作PM⊥EF于點(diǎn)M,∵四邊形ABCD是正方形,∴∠ACB=45°,∵E為BC的中點(diǎn),BC=1,∴CE=,∴PE=CE=,∵將PE繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)120°得到PF,∴PE=PF,∠EPF=120°,∴∠PEF=30°,∴PM=PE=由勾股定理得EM=,∴EF=2EM=,∴EF的最小值是.故答案為:.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),直角三角形的性質(zhì),垂線段的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.三、解答題1、(1);;理由見解析;(2)與的數(shù)量及位置關(guān)系都不變;答案見解析.【解析】【分析】(1)證明,由全等三角形的性質(zhì)得出,,得出,則可得出結(jié)論;(2)證明,由全等三角形的性質(zhì)得出,,由平行線的性質(zhì)證出,則可得出結(jié)論.【詳解】解:(1),.由題意可得,平行四邊形為矩形,,,,,,,,,設(shè)與交于點(diǎn),則,即.(2)與的數(shù)量及位置關(guān)系都不變.如圖,延長(zhǎng)到點(diǎn),四邊形為平行四邊形,,,,,,,,,,又,,,,,,,,,即.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),解題的關(guān)鍵是:熟練掌握正方形的性質(zhì).2、(1)135,(2)①作圖見解析,45°;②【解析】【分析】(1)過點(diǎn)E作于點(diǎn)K,由正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)及角平分線的定義可得,再利用等腰三角形的性質(zhì)和解直角三角形可求出,,繼而可證明,便可求解;(2)①根據(jù)題意作圖即可;由正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)三角形內(nèi)角和定理及等腰三角形的性質(zhì)求出,即可求解;②過點(diǎn)B作垂足為H,由等腰三角形的性質(zhì)得到,再證明即可得到,再推出為等腰直角三角形,即可得到三者之間的關(guān)系.(1)過點(diǎn)E作于點(diǎn)K四邊形ABCD是正方形BE平分∠ABC,AB=4,將線段BA繞點(diǎn)B旋轉(zhuǎn)(),得到線段BE,,四邊形ABCE的面積為故答案為:135,(2)①作圖如下四邊形ABCD是正方形由旋轉(zhuǎn)可得,②,理由如下:如圖,過點(diǎn)B作垂足為H,∠EBC的平分線BF交EC于點(diǎn)G為等腰直角三角形即【考點(diǎn)】本題屬于四邊形和三角形的綜合題目,涉及正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、角平分線的定義、等腰三角形的性質(zhì)和判定、解直角三角形、全等三角形的判定與性質(zhì)、三角形的內(nèi)角和定理等,靈活運(yùn)用上述知識(shí)點(diǎn)是解題的關(guān)鍵.3、(1);(2)證明見解析;(3)點(diǎn)P在過點(diǎn)B且與AB垂直的直線上,;(4).【解析】【分析】(1)作BD⊥x軸,與x軸交于D,利用等邊三角形的性質(zhì)和勾股定理即可解得;(2)根據(jù)等邊三角形的性質(zhì)可得兩組對(duì)應(yīng)邊相等,再結(jié)合角的和差可得∠BAP=∠OAC,再利用SAS可證得全等;(3)由(2)可知PB⊥AB,由此可得P的運(yùn)動(dòng)軌跡,再求得AB的解析式,根據(jù)垂直的兩條直線的一次項(xiàng)系數(shù)互為負(fù)倒數(shù)設(shè)BP的解析式,將B點(diǎn)坐標(biāo)代入即可求得解析式;(4)利用兩點(diǎn)之間距離公式求得P點(diǎn)坐標(biāo),再利用勾股定理求得BP,結(jié)合(2)可知OC=BP,由此可得C點(diǎn)坐標(biāo).【詳解】解:(1)∵A(0,2),∴OA=2,過點(diǎn)B作BD⊥x軸,∵△OAB為等邊三角形,OA=2,∴OB=OA=2,OD=1,∴即,故答案為:;(2)證明:∵△OAB和ACP為等邊三角形,∴AC=AP,AB=OA,∠CAP=∠OAB=60°,∴∠BAP=∠OAC,∴(SAS);(3)如上圖,∵,∴∠ABP=∠AOC=90°,∴點(diǎn)P在過點(diǎn)B且與AB垂直的直線上.設(shè)直線AB的解析式為:,則,解得:,∴,∴設(shè)直線BP的解析式為:,則,解得,故;(4)設(shè),∵OP=OB,∴,解得:,(舍去),故此時(shí),,∵點(diǎn)A、C、P按逆時(shí)針方向排列,∴,故答案為:.【考點(diǎn)】本題考查求一次函數(shù)解析式,勾股定理,全等三角形的性質(zhì)和判定,等邊三角形的性質(zhì).解題的關(guān)鍵是正確尋找全等三角形解決問題.4、(1);(2);(3)或【解析】【分析】(1)將代入,即可求解;(2)先求直線的解析式為,則,,可求;(3)設(shè),過點(diǎn)作軸垂線交于點(diǎn),可證明,則,將點(diǎn)代入拋物線解析式得,求得或.【詳解】解:(1)將代入,,;(2)令,則,或,,設(shè)直線的解析式為,,,,,,軸,,,,;(3)設(shè),如圖2,過點(diǎn)作軸垂線交于點(diǎn),,,,,,,,,,,解得或,或.【考點(diǎn)】本題是二次函數(shù)綜合題,考查了二次函數(shù)圖象和性質(zhì),待定系數(shù)法求拋物線解析式,三角形面積,全等三角形判定和性質(zhì),旋轉(zhuǎn)的性質(zhì)等,解題的關(guān)鍵是熟練掌握二次函數(shù)的圖象及性質(zhì),分類討論,數(shù)形結(jié)合.5、(1)見解析過程;(2)AD=EF,理由見解析過程.【解析】【分析】1)由旋轉(zhuǎn)的性質(zhì)可得AC=CD,∠ACD=60°,可得結(jié)論;(2)由“SAS”可證△ABC≌△DEC,可得E
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《污染地塊可持續(xù)風(fēng)險(xiǎn)管控與低碳再利用技術(shù)指南》(征求意見稿)
- 聲音信號(hào)壓縮方法
- 2025年中國(guó)社會(huì)科學(xué)院亞太與全球戰(zhàn)略研究院公開招聘管理人員備考題庫(kù)及答案詳解一套
- 2025年永康市龍山鎮(zhèn)人民政府工作人員招聘?jìng)淇碱}庫(kù)及1套參考答案詳解
- 國(guó)家知識(shí)產(chǎn)權(quán)局專利局專利審查協(xié)作四川中心2026年度專利審查員公開招聘?jìng)淇碱}庫(kù)及答案詳解1套
- 2025年吉林大學(xué)重慶研究院多崗位招聘?jìng)淇碱}庫(kù)及一套完整答案詳解
- 2025年灌陽(yáng)縣公安局警務(wù)輔助人員招聘?jìng)淇碱}庫(kù)及完整答案詳解1套
- 基于遙感技術(shù)的農(nóng)田監(jiān)測(cè)系統(tǒng)使用協(xié)議條款
- 論友情的力量讀后感(13篇)
- 企業(yè)宣傳資料設(shè)計(jì)與制作標(biāo)準(zhǔn)化手冊(cè)
- 十五五學(xué)校五年發(fā)展規(guī)劃(2026-2030)
- 養(yǎng)老機(jī)構(gòu)5項(xiàng)精細(xì)化護(hù)理照料內(nèi)容+18張護(hù)理服務(wù)操作流程圖
- T/CCS 032-2023礦井智能化通風(fēng)系統(tǒng)建設(shè)技術(shù)規(guī)范
- 2025年四川中鐵建昆侖投資集團(tuán)有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 醫(yī)院侵害未成年人案件強(qiáng)制報(bào)告制度培訓(xùn)課件
- 2025-2030中國(guó)推拉高爾夫車行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略分析研究報(bào)告
- 醫(yī)院辦公室主任述職報(bào)告
- 人工智能驅(qū)動(dòng)提升國(guó)際傳播可及性的機(jī)制、困境及路徑
- 駕駛員心理健康培訓(xùn)課件
- 2024年-2025年司法考試真題及復(fù)習(xí)資料解析
- 基于MATLABsimulink同步發(fā)電機(jī)突然三相短路仿真
評(píng)論
0/150
提交評(píng)論