解析卷-人教版9年級數(shù)學上冊《圓》定向練習試題(詳解)_第1頁
解析卷-人教版9年級數(shù)學上冊《圓》定向練習試題(詳解)_第2頁
解析卷-人教版9年級數(shù)學上冊《圓》定向練習試題(詳解)_第3頁
解析卷-人教版9年級數(shù)學上冊《圓》定向練習試題(詳解)_第4頁
解析卷-人教版9年級數(shù)學上冊《圓》定向練習試題(詳解)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版9年級數(shù)學上冊《圓》定向練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,正方形的邊長為4,以點為圓心,為半徑畫圓弧得到扇形(陰影部分,點在對角線上).若扇形正好是一個圓錐的側面展開圖,則該圓錐的底面圓的半徑是(

)A. B.1 C. D.2、在平面直角坐標系xOy中,已知點A(4,3),以原點O為圓心,5為半徑作⊙O,則()A.點A在⊙O上B.點A在⊙O內C.點A在⊙O外D.點A與⊙O的位置關系無法確定3、如圖,已知長方形中,,圓B的半徑為1,圓A與圓B內切,則點與圓A的位置關系是(

)A.點C在圓A外,點D在圓A內 B.點C在圓A外,點D在圓A外C.點C在圓A上,點D在圓A內 D.點C在圓A內,點D在圓A外4、如圖,AB是⊙O的直徑,C,D是⊙O上位于AB異側的兩點.下列四個角中,一定與∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD5、已知中,,,,點P為邊AB的中點,以點C為圓心,長度r為半徑畫圓,使得點A,P在⊙C內,點B在⊙C外,則半徑r的取值范圍是(

)A. B. C. D.6、如圖,⊙O的半徑為5,AB為弦,點C為的中點,若∠ABC=30°,則弦AB的長為()A. B.5 C. D.57、如圖,在△ABC中,AG平分∠CAB,使用尺規(guī)作射線CD,與AG交于點E,下列判斷正確的是(

A.AG平分CDB.C.點E是△ABC的內心D.點E到點A,B,C的距離相等8、如圖,點A,B,C,D,E是⊙O上5個點,若AB=AO=2,將弧CD沿弦CD翻折,使其恰好經(jīng)過點O,此時,圖中陰影部分恰好形成一個“鉆戒型”的軸對稱圖形,則“鉆戒型”(陰影部分)的面積為()A. B.4π﹣3 C.4π﹣4 D.9、如圖是一圓錐的側面展開圖,其弧長為,則該圓錐的全面積為A.60π B.85π C.95π D.169π10、已知一個三角形的三邊長分別為5、7、8,則其內切圓的半徑為()A. B. C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,AB為△ADC的外接圓⊙O的直徑,若∠BAD=50°,則∠ACD=_____°.2、如圖,四邊形ABCD內接于⊙O,∠A=125°,則∠C的度數(shù)為______.3、如圖,正方形ABCD的邊長為2a,E為BC邊的中點,的圓心分別在邊AB、CD上,這兩段圓弧在正方形內交于點F,則E、F間的距離為.4、如圖,四邊形是的外切四邊形,且,,則四邊形的周長為__________.5、如圖,是的直徑,弦于點,且,則的半徑為__________.6、如圖,在甲,,,,以點為圓心,的長為半徑作圓,交于點,交于點,陰影部分的面積為__________(結果保留).7、圓錐形冰淇淋的母線長是12cm,側面積是60πcm2,則底面圓的半徑長等于_____.8、如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內接多邊形,則∠BOM=_______.9、如圖,△ABC內接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點D,若☉O的半徑為2,則CD的長為_____10、如圖,在平面直角坐標系xOy中,點A,B,C的坐標分別是(0,4),(4,0),(8,0),⊙M是△ABC的外接圓,則點M的坐標為___________.三、解答題(5小題,每小題6分,共計30分)1、如圖,∠BAC的平分線交△ABC的外接圓于點D,∠ABC的平分線交AD于點E.(1)求證:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑.2、如圖①已知拋物線的圖象與軸交于、兩點(在的左側),與的正半軸交于點,連結;二次函數(shù)的對稱軸與軸的交點.(1)拋物線的對稱軸與軸的交點坐標為,點的坐標為_____(2)若以為圓心的圓與軸和直線都相切,試求出拋物線的解析式:(3)在(2)的條件下,如圖②是的正半軸上一點,過點作軸的平行線,與直線交于點與拋物線交于點,連結,將沿翻折,的對應點為’,在圖②中探究:是否存在點,使得’恰好落在軸上?若存在,請求出的坐標:若不存在,請說明理由.3、在平面直角坐標系中,對于點,給出如下定義:當點滿足時,稱點Q是點P的等和點.已知點.(1)在,,中,點P的等和點有______;(2)點A在直線上,若點P的等和點也是點A的等和點,求點A的坐標;(3)已知點和線段MN,對于所有滿足的點C,線段MN上總存在線段PC上每個點的等和點.若MN的最小值為5,直接寫出b的取值范圍.4、如圖,直線l:y=2x+1與拋物線C:y=2x2+bx+c相交于點A(0,m),B(n,7).(1)填空:m=,n=,拋物線的解析式為.(2)將直線l向下移a(a>0)個單位長度后,直線l與拋物線C仍有公共點,求a的取值范圍.(3)Q是拋物線上的一個動點,是否存在以AQ為直徑的圓與x軸相切于點P?若存在,請求出點P的坐標;若不存在,請說明理由.5、如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點F為BC的中點,連接EF和AD.(1)求證:EF是⊙O的切線;(2)若⊙O的半徑為2,∠EAC=60°,求AD的長.-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意,扇形ADE中弧DE的長即為圓錐底面圓的周長,即通過計算弧DE的長,再結合圓的周長公式進行計算即可得解.【詳解】∵正方形的邊長為4∴∵是正方形的對角線∴∴∴圓錐底面周長為,解得∴該圓錐的底面圓的半徑是,故選:D.【考點】本題主要考查了扇形的弧長公式,圓的周長公式,正方形的性質以及圓錐的相關知識點,熟練掌握弧長公式及圓的周長公式是解決本題的關鍵.2、A【解析】【分析】先求出點A到圓心O的距離,再根據(jù)點與圓的位置依據(jù)判斷可得.【詳解】解:∵點A(4,3)到圓心O的距離,∴OA=r=5,∴點A在⊙O上,故選:A.【考點】本題考查了對點與圓的位置關系的判斷.關鍵要記住若半徑為,點到圓心的距離為,則有:當時,點在圓外;當時,點在圓上,當時,點在圓內,也考查了勾股定理的應用.3、C【解析】【分析】根據(jù)內切得出圓A的半徑,再判斷點D、點E到圓心的距離即可【詳解】∵圓A與圓B內切,,圓B的半徑為1∴圓A的半徑為5∵<5∴點D在圓A內在Rt△ABC中,∴點C在圓A上故選:C【考點】本題考查點與圓的位置關系、圓與圓的位置關系、勾股定理,熟練掌握點與圓的位置關系是關鍵4、D【解析】【分析】由圓周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【詳解】解:連接BC,如圖所示:∵AB是⊙O的直徑,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故選:D.【考點】此題考查了圓周角定理:同弧所對的圓周角相等,直徑所對的圓周角是直角,正確掌握圓周角定理是解題的關鍵.5、D【解析】【分析】根據(jù)勾股定理,得AB=5,由P為AB的中點,得CP=,要使點A,P在⊙C內,r>3,r<4,從而確定r的取值范圍.【詳解】∵點A在⊙C內,∴r>3,∵點B在⊙C外,∴r<4,∴,故選:D.【考點】本題考查了點和圓的位置關系,利用數(shù)形結合思想是解題的關鍵.6、D【解析】【分析】連接OC、OA,利用圓周角定理得出∠AOC=60°,再利用垂徑定理得出AB即可.【詳解】連接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB為弦,點C為的中點,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故選D.【考點】此題考查圓周角定理,關鍵是利用圓周角定理得出∠AOC=60°.7、C【解析】【分析】根據(jù)作法可得CD平分∠ACB,結合題意即可求解.【詳解】解:由作法得CD平分∠ACB,

∵AG平分∠CAB,∴E點為△ABC的內心故答案為:C.【考點】此題考查了尺規(guī)作圖(角平分線),以及三角形角平分線的性質,熟練掌握相關基本性質是解題的關鍵.8、A【解析】【分析】連接CD、OE,根據(jù)題意證明四邊形OCED是菱形,然后分別求出扇形OCD和菱形OCED以及△AOB的面積,最后利用割補法求解即可.【詳解】解:連接CD、OE,由題意可知OC=OD=CE=ED,?。交?,∴S扇形ECD=S扇形OCD,四邊形OCED是菱形,∴OE垂直平分CD,由圓周角定理可知∠COD=∠CED=120°,∴CD=2×2×=2,∵AB=OA=OB=2,∴△AOB是等邊三角形,∴S△AOB=×2××2=,∴S陰影=2S扇形OCD﹣2S菱形OCED+S△AOB=2(2×2)+=2(π﹣2)+=π﹣3,故選:A.【考點】此題考查了菱形的性質和判定,等邊三角形的性質,圓周角定理,求解圓中陰影面面積等知識,解題的關鍵是根據(jù)題意做出輔助線,利用割補法求解.9、B【解析】【分析】設圓錐的底面圓的半徑為r,扇形的半徑為R,先根據(jù)弧長公式得到=10π,解得R=12,再利用圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長得到2π?r=10π,解得r=5,然后計算底面積與側面積的和.【詳解】設圓錐的底面圓的半徑為r,扇形的半徑為R,根據(jù)題意得=10π,解得R=12,2π?r=10π,解得r=5,所以該圓錐的全面積=π?52+?10π?12=85π.故選B.【考點】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.10、C【解析】【分析】先依據(jù)題意畫出圖形,如圖(見解析),過點A作于D,利用勾股定理可求出AD的長,再根據(jù)三角形內切圓的性質、三角形的面積公式即可得出答案.【詳解】解:如圖,,內切圓O的半徑為,切點為,則過點A作于D,設,則由勾股定理得:則,即解得,即又即解得則內切圓的半徑為故選:C.【考點】本題考查了三角形內切圓的性質、勾股定理等知識點,讀懂題意,正確畫出圖形,并求出AD的長是解題關鍵.二、填空題1、40【解析】【分析】若要利用∠BAD的度數(shù),需構建與其相等的圓周角;連接BD,由圓周角定理可知∠ACD=∠ABD,在Rt△ABD中,求出∠ABD的度數(shù)即可得答案.【詳解】連接BD,如圖,∵AB為△ADC的外接圓⊙O的直徑,∴∠ADB=90°,∴∠ABD=90°﹣∠BAD=90°﹣50°=40°,∴∠ACD=∠ABD=40°,故答案為40.【考點】本題考查了圓周角定理及其推論:同弧所對的圓周角相等;半圓(?。┖椭睆剿鶎Φ膱A周角是直角,正確添加輔助線是解題的關鍵.2、55°##55度【解析】【分析】根據(jù)圓內接四邊形的性質得出∠A+∠C=180°,再求出答案即可.【詳解】解:∵四邊形ABCD內接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=180°-125°=55°,故答案為:55°.【考點】本題考查了圓內接四邊形的性質和圓周角定理,能熟記圓內接四邊形的對角互補是解此題的關鍵.3、a.【解析】【分析】作DE的中垂線交CD于G,則G為的圓心,H為的圓心,連接EF,GH,交于點O,連接GF,F(xiàn)H,HE,EG,依據(jù)勾股定理可得GE=FG=a,根據(jù)四邊形EGFH是菱形,四邊形BCGH是矩形,即可得到Rt△OEG中,OE=a,即可得到EF=a.【詳解】如圖,作DE的中垂線交CD于G,則G為的圓心,同理可得,H為的圓心,連接EF,GH,交于點O,連接GF,F(xiàn)H,HE,EG,設GE=GD=x,則CG=2a-x,CE=a,Rt△CEG中,(2a-x)2+a2=x2,解得x=a,∴GE=FG=a,同理可得,EH=FH=a,∴四邊形EGFH是菱形,四邊形BCGH是矩形,∴GO=BC=a,∴Rt△OEG中,OE=,∴EF=a,故答案為a.【考點】本題主要考查了正方形的性質以及相交兩圓的性質,相交兩圓的連心線(經(jīng)過兩個圓心的直線),垂直平分兩圓的公共弦.注意:在習題中常常通過公共弦在兩圓之間建立聯(lián)系.4、48【解析】【分析】根據(jù)切線長定理得到AE=AH,BE=BF,CF=CG,DH=DG,得到AD+BC=AB+CD=24,根據(jù)四邊形的周長公式計算,得到答案.【詳解】解:∵四邊形ABCD是⊙O的外切四邊形,∴AE=AH,BE=BF,CF=CG,DH=DG,∴AD+BC=AB+CD=24,∴四邊形ABCD的周長=AD+BC+AB+CD=24+24=48,故答案為:48.【考點】本題考查了切線長定理,掌握從圓外一點引圓的兩條切線,它們的切線長相等是解題的關鍵.5、【解析】【分析】根據(jù)垂徑定理得出CE=DE,再由勾股定理得出OD2=DE2+(AE-OA)2,代入求解即可.【詳解】解:∵CD⊥AB,∴CE=DE=CD,∵AE=CD=6,∴CE=DE=3,∵OD=OB=OA,OE=AE-OA,在Rt△ODE中,由勾股定理可得:OD2=DE2+(AE-OA)2,即:OD2=32+(6-OD)2,解得:OD=,∴⊙O的半徑為:,故答案為:.【考點】本題考查了垂徑定理、勾股定理等知識;熟練掌握垂徑定理和勾股定理是解題的關鍵.6、【解析】【分析】連接BE,根據(jù)正切的定義求出∠A,根據(jù)扇形面積公式、三角形的面積公式計算即可.【詳解】解:連接BE,在Rt△ABC中,∠ABC=90°,∴tanA=,∴∠A=60°,∵BA=BE,∴△ABE為等邊三角形,∴∠ABE=30°,∴∠EBC=30°,∴陰影部分的面積=×2×2×+=故答案為.【考點】本題考查的是扇形面積計算、等邊三角形的判定和性質,掌握扇形面積公式是解題的關鍵.7、5cm.【解析】【分析】設圓錐的底面圓的半徑長為rcm,根據(jù)圓錐的側面積公式計算即可.【詳解】解:設圓錐的底面圓的半徑長為rcm.則×2π?r×12=60π,解得:r=5(cm),故答案為5cm.【考點】圓錐的側面積公式是本題的考點,牢記其公式是解題的關鍵.8、48°【解析】【分析】連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結合圖形計算即可.【詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點睛:本題考查的是正多邊形與圓的有關計算,掌握正多邊形的中心角的計算公式是解題的關鍵.9、【解析】【分析】連接OA,OC,根據(jù)∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數(shù)即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【考點】本題考查了圓周角定理以及銳角三角函數(shù),根據(jù)題意作出常用輔助線是解題關鍵.10、(6,6)【解析】【分析】如圖:由題意可得M在AB、BC的垂直平分線上,則BN=CN;證得ON=OB+BN=6,即△OMN是等腰直角三角形,得出MN=ON=6,即可得出答案.【詳解】解:如圖∵圓M是△ABC的外接圓∴點M在AB、BC的垂直平分線上,∴BN=CN,∵點A,B,C的坐標分別是(0,4),(4,0),(8,0)∴OA=OB=4,OC=8,∴BC=4,∴BN=2,∴ON=OB+BN=6,∵∠AOB=90°,∴△AOB是等腰直角三角形,∵OM⊥AB,∴∠MON=45°,∴△OMN是等腰直角三角形,∴MN=ON=6,點M的坐標為(6,6).故答案為(6,6).【考點】本題考查了三角形的外接圓與外心、坐標與圖形性質、等腰直角三角形的判定與性質等知識,其中判定△OMN為等腰直角三角形是解答本題的關鍵.三、解答題1、(1)證明見解析(2)2【解析】【詳解】試題分析:由角平分線得出,得出,由圓周角定理得出證出再由三角形的外角性質得出即可得出由得:,得出由圓周角定理得出是直徑,由勾股定理求出即可得出外接圓的半徑.試題解析:(1)證明:平分又平分連接,是直徑.平分∴半徑為2、(1);(2);(3)【解析】【分析】(1)由拋物線的對稱軸為直線,即可求得點E的坐標;在y=ax2﹣3ax﹣4a(a<0)令y=0可得關于x的方程ax2﹣3ax﹣4a=0,解方程即可求得點A的坐標;(2)如圖1,設⊙E與直線BC相切于點D,連接DE,則DE⊥BC,結合(1)可得DE=OE=,EB=,OC=-4a,在Rt△BDE中由勾股定理可得BD=2,這樣由tan∠OBC=即可列出關于a的方程,解方程求得a的值即可得到拋物線的解析式;(3)由折疊的性質和MN∥y軸可得∠MCN=∠M′CN=∠MNC,由此可得CM=MN,由點B的坐標為(4,0),點C的坐標為(0,3)可得線段BC=5,直線BC的解析式為y=﹣x+3,由此即可得到M、N的坐標分別為(m,﹣m+3)、(m,﹣m2+m+3),作MF⊥OC于F,這樣由sin∠BCO=即可解得CM=m,然后分點N在直線BC的上方和下方兩種情況用含m的代數(shù)式表達出MN的長度,結合MN=CM即可列出關于m的方程,解方程即可求得對應的m的值,從而得到對應的點Q的坐標.【詳解】解:(1)∵對稱軸x=,∴點E坐標(,0),令y=0,則有ax2﹣3ax﹣4a=0,∴x=﹣1或4,∴點A坐標(﹣1,0).故答案分別為(,0),(﹣1,0).(2)如圖①中,設⊙E與直線BC相切于點D,連接DE,則DE⊥BC,∵DE=OE=,EB=,OC=﹣4a,∴DB=,∵tan∠OBC=,∴,解得a=,∴拋物線解析式為y=.(3)如圖②中,由題意∠M′CN=∠NCB,∵MN∥OM′,∴∠M′CN=∠CNM,∴MN=CM,∵點B的坐標為(4,0),點C的坐標為(0,3),∴直線BC解析式為y=﹣x+3,BC=5,∴M(m,﹣m+3),N(m,﹣m2+m+3),作MF⊥OC于F,∵sin∠BCO=,∴,∴CM=m,①當N在直線BC上方時,﹣x2+x+3﹣(﹣x+3)=m,解得:m=或0(舍棄),∴Q1(,0).②當N在直線BC下方時,(﹣m+3)﹣(﹣m2+m+3)=m,解得m=或0(舍棄),∴Q2(,0),綜上所述:點Q坐標為(,0)或(,0).【考點】本題是一道二次函數(shù)與幾何及銳角三角函數(shù)綜合的題,解題的要點是:(1)熟悉二次函數(shù)的對稱軸方程及二次函數(shù)與一元二次方程的關系是解第1小題的關鍵;(2)由切線的性質得到DE⊥BC,從而得到tan∠OBC=,這樣結合已知條件求出a的值是解第2小題的關鍵;(3)過點M作MF⊥y軸于點F,這樣由sin∠BCO=變形把MC用含m的代數(shù)式表達出來,再由折疊的性質和MN∥y軸證得MN=MC,這樣就可分點N在BC的上方和下方兩種情況列出關于m的方程,解方程求得對應的m的值是解第3小題的關鍵.3、(1),;(2);(3).【解析】【分析】(1)根據(jù)新定義計算即可;(2)由(1)可知,P的等和點縱坐標比橫坐標大2,根據(jù)等和點的定義,A的橫坐標比縱坐標大2,由此可得方程,求解即可;(3)因為線段MN上總存在線段PC上每個點的等和點.且MN的最小值為5,所以PC的最大距離不能超過5,分別找到點P和點C的等和點所在的區(qū)域或直線,然后得到MN取得最大值時,b的邊界即可.(1)解:由題意可知:∵,∴點Q1是點P的等和點;∵,∴點Q2不是點P的等和點;∵,∴點Q3是點P的等和點;∴點P的等和點有,,(2)解:設,由(1)可知,P的等和點縱坐標比橫坐標大2,∵點P的等和點也是點A的等和點,∴A的橫坐標比縱坐標大2,則,解之得:,故,(3)解:∵P(2,0),∴P點的等和點在直線y=x+2上,∵B(b,0),∴B點的等和點在直線y=x+b上,設直線y=x+b與y軸的交點為B'(0,b),∵BC=1,∴C點在以B為圓心,半徑為1的圓上,∴點C的等和點是兩條直線及其之間與其平行的所有平行線上,以B'為圓心,1為半徑作圓,過點B'作y=x+2的垂線交圓與N點,交直線于M點,∵MN的最小值為5,∴B'M最小值為4,在Rt△B'MP'中,B'P=,∴PB=,∴OB=,同理當B點在y軸左側時OB=,∴≤b≤.【考點】本題考查新定義,涉及到平面直角坐標系,坐標軸上兩點之間的距離,一次函數(shù),解題的關鍵是理解題意,根據(jù)題意進行求解,(3)較難,需理解題意將其轉化為求PC最大值問題.4、(1)1,3,y=2x2﹣4x+1(2)0<a(3)存在,P(1,0)或P(,0)【解析】【分析】(1)將A(0,m),B(n,7)代入y=2x+1,可求m、n的值,再將A(0,1),B(3,7)代入y=2x2+bx+c,可求函數(shù)解析式;(2)由題意可得y=2x+1-a,聯(lián)立,得到2x2-6x+a=0,再由判別式Δ≥0即可求a是取值范圍;(3)設Q(t,s)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論