強化訓練人教版9年級數(shù)學上冊《圓》專項測試試卷(附答案詳解)_第1頁
強化訓練人教版9年級數(shù)學上冊《圓》專項測試試卷(附答案詳解)_第2頁
強化訓練人教版9年級數(shù)學上冊《圓》專項測試試卷(附答案詳解)_第3頁
強化訓練人教版9年級數(shù)學上冊《圓》專項測試試卷(附答案詳解)_第4頁
強化訓練人教版9年級數(shù)學上冊《圓》專項測試試卷(附答案詳解)_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

人教版9年級數(shù)學上冊《圓》專項測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、以原點O為圓心的圓交x軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內(nèi)⊙O上的一點,若∠DAB=25°,則∠OCD=(

).A.50° B.40° C.70° D.30°2、下列說法正確的是(

)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點所表示的數(shù)為;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應假設“這個三角形中有兩個鈍角”;⑤如圖,在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點.A.1 B.2 C.3 D.43、如圖,點A,B的坐標分別為,點C為坐標平面內(nèi)一點,,點M為線段的中點,連接,則的最大值為()A. B. C. D.4、如圖,⊙O的半徑為5,AB為弦,點C為的中點,若∠ABC=30°,則弦AB的長為()A. B.5 C. D.55、如圖,已知中,,,,如果以點為圓心的圓與斜邊有公共點,那么⊙的半徑的取值范圍是(

)A. B. C. D.6、如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個圓錐的底面和側(cè)面,則圓錐的表面積為(

)A. B. C. D.7、已知圓內(nèi)接正三角形的面積為,則該圓的內(nèi)接正六邊形的邊心距是()A. B. C. D.8、如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,過點C作⊙O的切線,交AB的延長線于點D.設∠A=α,∠D=β,則()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°9、如圖,在中,,,,以點為圓心,為半徑的圓與所在直線的位置關系是(

)A.相交 B.相離 C.相切 D.無法判斷10、如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.21第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在⊙O中,是⊙O的直徑,,點是點關于的對稱點,是上的一動點,下列結論:①;②;③;④的最小值是10.上述結論中正確的個數(shù)是_________.2、如圖,在平面直角坐標系中,點A(0,1)、B(0,﹣1),以點A為圓心,AB為半徑作圓,交x軸于點C、D,則CD的長是____.3、如圖,在矩形中,是邊上一點,連接,將矩形沿翻折,使點落在邊上點處,連接.在上取點,以點為圓心,長為半徑作⊙與相切于點.若,,給出下列結論:①是的中點;②⊙的半徑是2;③;④.其中正確的是________.(填序號)4、如圖,AB為圓O的切線,點A為切點,OB交圓O于點C,點D在圓O上,連接AD、CD、OA,若∠ADC=25°,則∠B的度數(shù)為____.5、如圖,,,以為直徑作半圓,圓心為點;以點為圓心,為半徑作,過點作的平行線交兩弧于點、,則陰影部分的面積是________.6、如圖,圓錐的母線長OA=6,底面圓的半徑為,一只小蟲在圓線底面的點A處繞圓錐側(cè)面一周又回到點A處,則小蟲所走的最短路程為___________(結果保留根號)7、一個扇形的圓心角是120°.它的半徑是3cm.則扇形的弧長為__________cm.8、如圖,已知的半徑為2,內(nèi)接于,,則__________.9、如圖所示的扇形中,,C為上一點,,連接,過C作的垂線交于點D,則圖中陰影部分的面積為_______.10、如圖,圓錐的母線長為10cm,高為8cm,則該圓錐的側(cè)面展開圖(扇形)的弧長為_____cm.(結果用π表示)三、解答題(5小題,每小題6分,共計30分)1、如圖,四邊形OABC中,.OA=OC,BA=BC.以O為圓心,以OA為半徑作☉O(1)求證:BC是☉O的切線:(2)連接BO并延長交⊙O于點D,延長AO交⊙O于點E,與此的延長線交于點F若.①補全圖形;②求證:OF=OB.2、已知:A、B、C、D是⊙O上的四個點,且,求證:AC=BD.3、如圖,內(nèi)接于,,,則的直徑等于多少?4、已知四邊形內(nèi)接于⊙O,,垂足為E,,垂足為F,交于點G,連接.(1)求證:;(2)如圖1,若,,求⊙O的半徑;(3)如圖2,連接,交于點H,若,,試判斷是否為定值,若是,求出該定值;若不是,說明理由.5、如圖,OC為⊙O的半徑,弦AB⊥OC于點D,OC=10,CD=4,求AB的長.-參考答案-一、單選題1、C【解析】【分析】根據(jù)圓周角定理求出∠DOB,根據(jù)等腰三角形性質(zhì)求出∠OCD=∠ODC,根據(jù)三角形內(nèi)角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點】本題考查了圓周角定理,等腰三角形性質(zhì),三角形內(nèi)角和定理的應用,主要考查學生的推理能力,題目比較典型,難度適中.2、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實數(shù)的大小比較,可判斷②;根據(jù)點在數(shù)軸上所對應的實數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質(zhì),可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點所表示的數(shù)為,故本小題錯誤;④用反證法證明命題“一個三角形最多有一個鈍角”時,首先應假設“這個三角形中有兩個鈍角或三個鈍角”,故本小題錯誤;⑤在內(nèi)一點到這三條邊的距離相等,則點是三個角平分線的交點,故本小題正確.故選B【考點】本題主要考查近似數(shù)的精確度定義,實數(shù)的大小比較,點在數(shù)軸上所對應的實數(shù),反證法的概念,角平分線的性質(zhì),熟練掌握上述知識點,是解題的關鍵.3、B【解析】【分析】如圖所示,取AB的中點N,連接ON,MN,根據(jù)三角形的三邊關系可知OM<ON+MN,則當ON與MN共線時,OM=ON+MN最大,再根據(jù)等腰直角三角形的性質(zhì)以及三角形的中位線即可解答.【詳解】解:如圖所示,取AB的中點N,連接ON,MN,三角形的三邊關系可知OM<ON+MN,則當ON與MN共線時,OM=ON+MN最大,∵,則△ABO為等腰直角三角形,∴AB=,N為AB的中點,∴ON=,又∵M為AC的中點,∴MN為△ABC的中位線,BC=1,則MN=,∴OM=ON+MN=,∴OM的最大值為故答案選:B.【考點】本題考查了等腰直角三角形的性質(zhì)以及三角形中位線的性質(zhì),解題的關鍵是確定當ON與MN共線時,OM=ON+MN最大.4、D【解析】【分析】連接OC、OA,利用圓周角定理得出∠AOC=60°,再利用垂徑定理得出AB即可.【詳解】連接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB為弦,點C為的中點,∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故選D.【考點】此題考查圓周角定理,關鍵是利用圓周角定理得出∠AOC=60°.5、C【解析】【分析】作CD⊥AB于D,根據(jù)勾股定理計算出AB=13,再利用面積法計算出然后根據(jù)直線與圓的位置關系得到當時,以C為圓心、r為半徑作的圓與斜邊AB有公共點.【詳解】解:作CD⊥AB于D,如圖,∵∠C=90°,AC=3,BC=4,∴∴∴以C為圓心、r為半徑作的圓與斜邊AB有公共點時,r的取值范圍為故選:C【考點】本題考查了直線與圓的位置關系:設⊙O的半徑為r,圓心O到直線l的距離為d:直線l和⊙O相交?d<r;直線l和⊙O相切?d=r;直線l和⊙O相離?d>r.6、B【解析】【分析】設圓錐的底面的半徑為rcm,則DE=2rcm,利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長得到2πr,解方程求出r,然后求得直徑即可.【詳解】解:設圓錐的底面的半徑為rcm,則AE=BF=6-2r根據(jù)題意得2πr,解得r=1,側(cè)面積=,底面積=所以圓錐的表面積=,故選:B.【考點】本題綜合考查有關扇形和圓錐的相關計算.解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應關系:(1)圓錐的母線長等于側(cè)面展開圖的扇形半徑;(2)圓錐的底面周長等于側(cè)面展開圖的扇形弧長.正確對這兩個關系的記憶是解題的關鍵.7、B【解析】【分析】根據(jù)題意可以求得半徑,進而解答即可.【詳解】因為圓內(nèi)接正三角形的面積為,所以圓的半徑為,所以該圓的內(nèi)接正六邊形的邊心距×sin60°=×=1,故選B.【考點】本題考查正多邊形和圓,解答本題的關鍵是明確題意,求出相應的圖形的邊心距.8、C【解析】【分析】連接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切線,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【詳解】連接OC,如圖,∵⊙O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故選:C.【考點】本題考查圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì),掌握圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì).9、A【解析】【分析】過點C作CD⊥AB于點D,由題意易得AB=5,然后可得,進而根據(jù)直線與圓的位置關系可求解.【詳解】解:過點C作CD⊥AB于點D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關系為相交,故選A.【考點】本題主要考查直線與圓的位置關系,熟練掌握直線與圓的位置關系是解題的關鍵.10、A【解析】【分析】根據(jù)已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,∴cosB==,∴∠B=45°,∵sinC===,∴AD=3,∴CD==4,∴BD=3,則△ABC的面積是:×AD×BC=×3×(3+4)=.故選A.【考點】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關線段的長度是解決問題的關鍵.二、填空題1、3【解析】【分析】①根據(jù)點是點關于的對稱點可知,進而可得;②根據(jù)一條弧所對的圓周角等于圓心角的一半即可得結論;③根據(jù)等弧對等角,可知只有當和重合時,,;④作點關于的對稱點,連接,DF,此時的值最短,等于的長,然后證明DF是的直徑即可得到結論.【詳解】解:,點是點關于的對稱點,,,①正確;,∴②正確;的度數(shù)是60°,的度數(shù)是120°,∴只有當和重合時,,∴只有和重合時,,③錯誤;作關于的對稱點,連接,交于點,連接交于點,此時的值最短,等于的長.連接,并且弧的度數(shù)都是60°,是的直徑,即,∴當點與點重合時,的值最小,最小值是10,∴④正確.故答案為:3.【考點】本題考查了圓的綜合知識,涉及圓周角、圓心角、弧、弦的關系、最短距離的確定等,掌握圓的基本性質(zhì)并靈活運用是解題關鍵.2、【解析】【分析】根據(jù)題意在中求出,利用垂徑定理得出結果.【詳解】由題意,在中,,,由垂徑定理知,,故答案為:.【考點】本題考查了勾股定理及垂徑定理,熟練掌握垂徑定理是解決本題的關鍵.3、①②④.【解析】【詳解】解:①∵AF是AB翻折而來,∴AF=AB=6.∵AD=BC=,∴DF==3,∴F是CD中點;∴①正確;②連接OP,∵⊙O與AD相切于點P,∴OP⊥AD.∵AD⊥DC,∴OP∥CD,∴,設OP=OF=x,則,解得:x=2,∴②正確;③∵Rt△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF.∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③錯誤;④連接OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG為等邊△.同理△OPG為等邊△,∴∠POG=∠FOG=60°,OH=OG=,S扇形OPG=S扇形OGF,∴S陰影=(S矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG)=S矩形OPDH﹣S△OFG==,∴④正確;故答案為①②④.4、40°【解析】【分析】根據(jù)圓周角和圓心角的關系,可以得到∠AOC的度數(shù),然后根據(jù)AB為⊙O的切線和直角三角形的兩個銳角互余,即可求得∠B的度數(shù).【詳解】解:∵∠ADC=25°,∴∠AOC=50°,∵AB為⊙O的切線,點A為切點,∴∠OAB=90°,∴∠B=90°-∠AOC=90°-50°=40°,故答案為:40°.【考點】本題考查切線的性質(zhì)、圓周角定理、直角三角形的性質(zhì),利用數(shù)形結合的思想解答問題是解答本題的關鍵.5、【解析】【分析】連接CE,如圖,利用平行線的性質(zhì)得∠COE=∠EOB=90°,再利用勾股定理計算出OE=,利用余弦的定義得到∠OCE=60°,然后根據(jù)扇形面積公式,利用S陰影部分=S扇形BCE?S△OCE?S扇形BOD進行計算即可.【詳解】解:連接CE,如圖,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=,cos∠OCE=,∴∠OCE=60°,∴S陰影部分=S扇形BCE?S△OCE?S扇形BOD=,故答案為.【考點】本題考查了扇形面積的計算:求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.6、6【解析】【分析】利用圓錐的底面周長等于側(cè)面展開圖的弧長可得圓錐側(cè)面展開圖的圓心角,求出側(cè)面展開圖中兩點間的距離即為最短距離.【詳解】∵底面圓的半徑為,∴圓錐的底面周長為2×=3,設圓錐的側(cè)面展開圖的圓心角為n.∴,解得n=90°,如圖,AA′的長就是小蟲所走的最短路程,∵∠O=90°,OA′=OA=6,∴AA′=.故答案為:6.【考點】本題考查了圓錐的計算,考查圓錐側(cè)面展開圖中兩點間距離的求法;把立體幾何轉(zhuǎn)化為平面幾何來求是解決本題的突破點.7、2π【解析】【詳解】分析:根據(jù)弧長公式可得結論.詳解:根據(jù)題意,扇形的弧長為=2π,故答案為2π點睛:本題主要考查弧長的計算,熟練掌握弧長公式是解題的關鍵.8、【解析】【詳解】分析:根據(jù)圓內(nèi)接四邊形對邊互補和同弧所對的圓心角是圓周角的二倍,可以求得∠AOB的度數(shù),然后根據(jù)勾股定理即可求得AB的長.詳解:連接AD、AE、OA、OB,∵⊙O的半徑為2,△ABC內(nèi)接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴AB=2,故答案為2.點睛:本題考查三角形的外接圓和外心,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.9、【解析】【分析】先根據(jù)題目條件計算出OD,CD的長度,判斷為等邊三角形,之后表示出陰影面積的計算公式進行計算即可.【詳解】在中,∴∵∴∵∴為等邊三角形∴故答案為:【考點】本題考查了陰影面積的計算,熟知不規(guī)則陰影面積的計算方法是解題的關鍵.10、【解析】【分析】先求出圓錐的底面半徑,然后根據(jù)圓錐的展開圖為扇形,結合圓周長公式進行求解即可.【詳解】設底面圓的半徑為rcm,由勾股定理得:r==6,∴2πr=2π×6=12π,故答案為12π.【考點】本題考查了圓錐的計算,解答本題的關鍵是掌握圓錐側(cè)面展開圖是個扇形,要熟練掌握扇形與圓錐之間的聯(lián)系.三、解答題1、(1)證明見解析(2)①圖見解析(2)證明見解析【解析】【分析】(1)連接AC,根據(jù)等腰三角形的性質(zhì)得到∠OAC=∠OCA,∠BAC=∠BCA,得到∠OCB=∠OAB=90°,根據(jù)切線的判定定理證明;(2)①根據(jù)題意畫出圖形;②根據(jù)切線長定理得到BA=BC,得到BD是AC的垂直平分線,根據(jù)垂徑定理、圓心角和弧的關系定理得到∠AOC=120°,根據(jù)等腰三角形的判定定理證明結論.【詳解】(1)證明:如圖1,連接AC,∵OA=OC,∴∠OAC=∠OCA,∵BA=BC,∴∠BAC=∠BCA,∴∠OAC+∠BCA=∠OCA+∠BCA,即∠OCB=∠OAB=90°,∴OC⊥BC,∴BC是⊙O的切線;(2)①解:補全圖形如圖2;②證明:∵∠OAB=90°,∴BA是⊙O的切線,又BC是⊙O的切線,∴BA=BC,∵BA=BC,OA=OC,∴BD是AC的垂直平分線,∴,∵,∴=,∴∠AOC=120°,∴∠AOB=∠COB=∠COE=60°,∴∠OBF=∠F=30°,∴OF=OB.【考點】本題考查的是切線的判定、垂徑定理、切線長定理的應用,掌握切線的判定定理、圓心角和弧之間的關系定理是解題的關鍵.2、詳見解析【解析】【分析】先根據(jù)可得,再根據(jù)同圓中等弧所對的弦相等即得.【詳解】證明:∵∴∴【考點】本題考查圓心角定理推論,解題關鍵是熟知同圓或等圓中,等弧所對的弦相等.3、12【解析】【分析】連接OB、OC,如圖,利用圓周角定理得到∠BOC=60°,則可判斷△OBC為等邊三角形,從而得到OB=6.【詳解】解:連接OB、OC,如圖,∵∠BOC=2∠BAC=2×30°=60°,而OB=OC,∴△OBC為等邊三角形,∴OB=BC=6,∴⊙O的直徑等于12.故答案為:12.【考點】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論