解析卷人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》單元測(cè)試練習(xí)題(解析版)_第1頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》單元測(cè)試練習(xí)題(解析版)_第2頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》單元測(cè)試練習(xí)題(解析版)_第3頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》單元測(cè)試練習(xí)題(解析版)_第4頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》單元測(cè)試練習(xí)題(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩36頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》單元測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、直角三角形的兩條直角邊分別為5和12,那么這個(gè)三角形的斜邊上的中線長(zhǎng)為()A.6 B.6.5 C.10 D.132、如圖,四邊形ABCD中,∠A=60°,AD=2,AB=3,點(diǎn)M,N分別為線段BC,AB上的動(dòng)點(diǎn)(含端點(diǎn),但點(diǎn)M不與點(diǎn)B重合),點(diǎn)E,F(xiàn)分別為DM,MN的中點(diǎn),則EF長(zhǎng)度的最大值為()A. B. C. D.3、在平行四邊形ABCD中,∠A=30°,那么∠B與∠A的度數(shù)之比為()A.4:1 B.5:1 C.6:1 D.7:14、如圖,把正方形紙片ABCD沿對(duì)邊中點(diǎn)所在的直線對(duì)折后展開(kāi),折痕為MN,再過(guò)點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,折痕為BE,若AB的長(zhǎng)為2,則FM的長(zhǎng)為()A.2 B. C. D.15、如圖,OA⊥OB,OB=4,P是射線OA上一動(dòng)點(diǎn),連接BP,以B為直角頂點(diǎn)向上作等腰直角三角形,在OA上取一點(diǎn)D,使∠CDO=45°,當(dāng)P在射線OA上自O(shè)向A運(yùn)動(dòng)時(shí),PD的長(zhǎng)度的變化()A.一直增大 B.一直減小C.先增大后減小 D.保持不變6、如圖,陰影部分是將一個(gè)菱形剪去一個(gè)平行四邊形后剩下的,要想知道陰影部分的周長(zhǎng),需要測(cè)量一些線段的長(zhǎng),這些線段可以是()A.AF B.AB C.AB與BC D.BC與CD7、如圖,在△ABC中,AC=BC=8,∠BCA=60°,直線AD⊥BC于點(diǎn)D,E是AD上的一個(gè)動(dòng)點(diǎn),連接EC,將線段EC繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到FC,連接DF,則在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,DF的最小值是()A.1 B.1.5 C.2 D.48、如圖,矩形ABCD中,DE⊥AC于E,若∠ADE=2∠EDC,則∠BDE的度數(shù)為()A.36° B.30° C.27° D.18°9、如圖,下列條件中,能使平行四邊形ABCD成為菱形的是()A. B. C. D.10、已知直線,點(diǎn)P在直線l上,點(diǎn),點(diǎn),若是直角三角形,則點(diǎn)P的個(gè)數(shù)有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、能使平行四邊形ABCD為正方形的條件是___________(填上一個(gè)符合題目要求的條件即可).2、如圖,直線l1⊥l3,l2⊥l3,垂足分別為P、Q,一塊含有45°的直角三角板的頂點(diǎn)A、B、C分別在直線l1、l2、線段PQ上,點(diǎn)O是斜邊AB的中點(diǎn),若PQ等于,則OQ的長(zhǎng)等于_____.3、如圖,在□中,⊥于點(diǎn),⊥于點(diǎn).若,,且的周長(zhǎng)為40,則的面積為_(kāi)_______.4、如圖,△ABC中,AC=BC=3,AB=2,將它沿AB翻折得到△ABD,點(diǎn)P、E、F分別為線段AB、AD、DB上的動(dòng)點(diǎn),則PE+PF的最小值是_____.5、如圖,四邊形和四邊形都是邊長(zhǎng)為4的正方形,點(diǎn)是正方形對(duì)角線的交點(diǎn),正方形繞點(diǎn)旋轉(zhuǎn)過(guò)程中分別交,于點(diǎn),,則四邊形的面積為_(kāi)_____.6、如圖,在矩形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E、F分別是AO、AD的中點(diǎn),若AB=6cm,BC=8cm,則EF=_____cm.7、如圖,點(diǎn)P是矩形ABCD的對(duì)角線AC上一點(diǎn),過(guò)點(diǎn)P作EF∥BC,分別交AB,CD于點(diǎn)E、F,連接PB、PD,若AE=2,PF=9,則圖中陰影面積為_(kāi)_____;8、如圖,將n個(gè)邊長(zhǎng)都為1的正方形按如圖所示擺放,點(diǎn)A1,A2,…,An分別是正方形的中心,則n個(gè)正方形重疊形成的重疊部分的面積和為_(kāi)____.9、如圖,正方形紙片ABCD的邊長(zhǎng)為12,E是邊CD上一點(diǎn),連接AE.折疊該紙片,使點(diǎn)A落在AE上的G點(diǎn),并使折痕經(jīng)過(guò)點(diǎn)B,得到折痕BF,點(diǎn)F在AD上.若,則GE的長(zhǎng)為_(kāi)_________.10、如圖,矩形ABCD中,AB=9,AD=12,點(diǎn)M在對(duì)角線BD上,點(diǎn)N為射線BC上一動(dòng)點(diǎn),連接MN,DN,且∠DNM=∠DBC,當(dāng)DMN是等腰三角形時(shí),線段BN的長(zhǎng)為_(kāi)__.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處;再將矩形沿折疊,使點(diǎn)落在點(diǎn)處且過(guò)點(diǎn).

(1)求證:四邊形是平行四邊形;(2)當(dāng)是多少度時(shí),四邊形為菱形?試說(shuō)明理由.2、如圖1,正方形ABCD的邊長(zhǎng)為a,E為邊CD上一動(dòng)點(diǎn)(點(diǎn)E與點(diǎn)C、D不重合),連接AE交對(duì)角線BD于點(diǎn)P,過(guò)點(diǎn)P作PF⊥AE交BC于點(diǎn)F.(1)求證:PA=PF;(2)如圖2,過(guò)點(diǎn)F作FQ⊥BD于Q,在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,PQ的長(zhǎng)度是否發(fā)生變化?若不變,求出PQ的長(zhǎng);若變化,請(qǐng)說(shuō)明變化規(guī)律.(3)請(qǐng)寫(xiě)出線段AB、BF、BP之間滿足的數(shù)量關(guān)系,不必說(shuō)明理由.3、在菱形ABCD中,∠ABC=60°,P是直線BD上一動(dòng)點(diǎn),以AP為邊向右側(cè)作等邊APE(A,P,E按逆時(shí)針排列),點(diǎn)E的位置隨點(diǎn)P的位置變化而變化.(1)如圖1,當(dāng)點(diǎn)P在線段BD上,且點(diǎn)E在菱形ABCD內(nèi)部或邊上時(shí),連接CE,則BP與CE的數(shù)量關(guān)系是,BC與CE的位置關(guān)系是;(2)如圖2,當(dāng)點(diǎn)P在線段BD上,且點(diǎn)E在菱形ABCD外部時(shí),(1)中的結(jié)論是否還成立?若成立,請(qǐng)予以證明;若不成立,請(qǐng)說(shuō)明理由;(3)當(dāng)點(diǎn)P在直線BD上時(shí),其他條件不變,連接BE.若AB=2,BE=2,請(qǐng)直接寫(xiě)出APE的面積.4、如圖,ABCD的對(duì)角線AC、BD相交于點(diǎn)O,BD12cm,AC6cm,點(diǎn)E在線段BO上從點(diǎn)B以1cm/s的速度向點(diǎn)O運(yùn)動(dòng),點(diǎn)F在線段OD上從點(diǎn)O以2cm/s的速度向點(diǎn)D運(yùn)動(dòng).

(1)若點(diǎn)E、F同時(shí)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),四邊形AECF是平行四邊形.(2)在(1)的條件下,當(dāng)AB為何值時(shí),AECF是菱形;(3)求(2)中菱形AECF的面積.5、如圖,在?ABCD中,對(duì)角線AC,BD交于點(diǎn)O,E是BD延長(zhǎng)線上一點(diǎn),且△ACE是等邊三角形.(1)求證:四邊形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四邊形ABCD的面積.-參考答案-一、單選題1、B【解析】【分析】根據(jù)勾股定理可求得直角三角形斜邊的長(zhǎng),再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:∵直角三角形兩直角邊長(zhǎng)為5和12,∴斜邊=,∴此直角三角形斜邊上的中線的長(zhǎng)==6.5.故選:B.【點(diǎn)睛】本題主要考查勾股定理及直角三角形斜邊中線定理,熟練掌握勾股定理及直角三角形斜邊中線定理是解題的關(guān)鍵.2、A【解析】【分析】根據(jù)三角形的中位線定理得出EF=DN,從而可知DN最大時(shí),EF最大,因?yàn)镹與B重合時(shí)DN最大,此時(shí)根據(jù)勾股定理求得DN,從而求得EF的最大值.連接DB,過(guò)點(diǎn)D作DH⊥AB交AB于點(diǎn)H,再利用直角三角形的性質(zhì)和勾股定理求解即可;【詳解】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大時(shí),EF最大,∴N與B重合時(shí)DN=DB最大,在Rt△ADH中,∵∠A=60°∴AH=2×=1,DH=,∴BH=AB﹣AH=3﹣1=2,∴DB=,∴EFmax=DB=,∴EF的最大值為.故選A【點(diǎn)睛】本題考查了三角形的中位線定理,勾股定理,含30度角的直角三角形的性質(zhì),利用中位線求得EF=DN是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)先求出∠B的度數(shù),即可得到答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故選B.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握平行四邊形鄰角互補(bǔ).4、B【解析】【分析】由折疊的性質(zhì)可得,∠BMN=90°,F(xiàn)B=AB=2,由此利用勾股定理求解即可.【詳解】解:∵把正方形紙片ABCD沿對(duì)邊中點(diǎn)所在的直線對(duì)折后展開(kāi),折痕為MN,AB=2,∴,∠BMN=90°,∵四邊形ABCD為正方形,AB=2,過(guò)點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,∴FB=AB=2,則在Rt△BMF中,,故選B.【點(diǎn)睛】本題主要考查了正方形與折疊,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).5、D【解析】【分析】過(guò)點(diǎn)作于,于,先根據(jù)矩形的判定與性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,然后根據(jù)等腰直角三角形的判定與性質(zhì)可得,最后根據(jù)線段的和差、等量代換即可得出結(jié)論.【詳解】解:如圖,過(guò)點(diǎn)作于,于,則四邊形是矩形,,∵是等腰直角三角形,∴,∴,∵,∴,∴,在和中,,∴,∴,∴,∵,∴是等腰直角三角形,∴,∴,∴的長(zhǎng)度保持不變,故選:D.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),通過(guò)作輔助線,構(gòu)造矩形和全等三角形是解題關(guān)鍵.6、A【解析】【分析】如圖,延長(zhǎng),交于點(diǎn),證明,,再利用菱形的性質(zhì)證明:陰影部分的周長(zhǎng),從而可得答案.【詳解】解:如圖,延長(zhǎng),交于點(diǎn),四邊形是平行四邊形,,,四邊形是菱形,,陰影部分的周長(zhǎng),故需要測(cè)量的長(zhǎng)度,故選A.【點(diǎn)睛】本題考查的是平行四邊形的性質(zhì),菱形的性質(zhì),證明陰影部分的周長(zhǎng)是解本題的關(guān)鍵.7、C【解析】【分析】取線段AC的中點(diǎn)G,連接EG,根據(jù)等邊三角形的性質(zhì)以及角的計(jì)算即可得出CD=CG以及∠FCD=∠ECG,由旋轉(zhuǎn)的性質(zhì)可得出EC=FC,由此即可利用全等三角形的判定定理SAS證出△FCD≌△ECG,進(jìn)而即可得出DF=GE,再根據(jù)點(diǎn)G為AC的中點(diǎn),即可得出EG的最小值,此題得解.【詳解】解:取線段AC的中點(diǎn)G,連接EG,如圖所示.∵AC=BC=8,∠BCA=60°,∴△ABC為等邊三角形,且AD為△ABC的對(duì)稱軸,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.當(dāng)EG∥BC時(shí),EG最小,∵點(diǎn)G為AC的中點(diǎn),∴此時(shí)EG=DF=CD=BC=2.故選:C.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),三角形中位線的性質(zhì),解題的關(guān)鍵是通過(guò)全等三角形的性質(zhì)找出DF=GE,本題屬于中檔題,難度不大,解決該題型題目時(shí),根據(jù)全等三角形的性質(zhì)找出相等的邊是關(guān)鍵.8、B【解析】【分析】根據(jù)已知條件可得以及的度數(shù),然后求出各角的度數(shù)便可求出.【詳解】解:在矩形ABCD中,,∵,∴,,∵,∴,∵,∴,∴,∴.故選:B.【點(diǎn)睛】題目主要考查矩形的性質(zhì),三角形內(nèi)角和及等腰三角形的性質(zhì),理解題意,綜合運(yùn)用各個(gè)性質(zhì)是解題關(guān)鍵.9、C【解析】【分析】根據(jù)菱形的性質(zhì)逐個(gè)進(jìn)行證明,再進(jìn)行判斷即可.【詳解】解:A、?ABCD中,本來(lái)就有AB=CD,故本選項(xiàng)錯(cuò)誤;B、?ABCD中本來(lái)就有AD=BC,故本選項(xiàng)錯(cuò)誤;C、?ABCD中,AB=BC,可利用鄰邊相等的平行四邊形是菱形判定?ABCD是菱形,故本選項(xiàng)正確;D、?ABCD中,AC=BD,根據(jù)對(duì)角線相等的平行四邊形是矩形,即可判定?ABCD是矩形,而不能判定?ABCD是菱形,故本選項(xiàng)錯(cuò)誤.故選:C.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),菱形的判定的應(yīng)用,注意:菱形的判定定理有:①有一組鄰邊相等的平行四邊形是菱形,②四條邊都相等的四邊形是菱形,③對(duì)角線互相垂直的平行四邊形是菱形.10、C【解析】【分析】分別討論,,三種情況,求出點(diǎn)坐標(biāo)即可得出答案.【詳解】如圖,當(dāng)時(shí),點(diǎn)與點(diǎn)橫坐標(biāo)相同,代入中得:,,當(dāng)時(shí),點(diǎn)與點(diǎn)橫坐標(biāo)相同,,代入中得:,,當(dāng)時(shí),取中點(diǎn)為點(diǎn),過(guò)點(diǎn)作交于點(diǎn),設(shè),,,,,,,,,在中,,解得:,,點(diǎn)有3個(gè).故選:C.【點(diǎn)睛】本題考查直角三角形的性質(zhì)與平面直角坐標(biāo)系,掌握分類(lèi)討論的思想是解題的關(guān)鍵.二、填空題1、AC=BD且AC⊥BD(答案不唯一)【解析】【分析】根據(jù)正方形的判定定理,即可求解.【詳解】解:當(dāng)AC=BD時(shí),平行四邊形ABCD為菱形,又由AC⊥BD,可得菱形ABCD為正方形,所以當(dāng)AC=BD且AC⊥BD時(shí),平行四邊形ABCD為正方形.故答案為:AC=BD且AC⊥BD(答案不唯一)【點(diǎn)睛】本題主要考查了正方形的判定,熟練掌握正方形的判定定理是解題的關(guān)鍵.2、【解析】【分析】由“AAS”可證△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可證△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性質(zhì)和直角三角形的性質(zhì)可求解.【詳解】解:如圖,連接PO,并延長(zhǎng)交l2于點(diǎn)H,∵l1⊥l3,l2⊥l3,∴l(xiāng)1∥l3,∠APC=∠BQC=∠ACB=90°,∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,∴∠PAC=∠BCQ,在△ACP和△CBQ中,,∴△ACP≌△CBQ(AAS),∴AP=CQ,PC=BQ,∴PC+CQ=AP+BQ=PQ=,∵AP∥BQ,∴∠OAP=∠OBH,∵點(diǎn)O是斜邊AB的中點(diǎn),∴AO=BO,在△APO和△BHO中,,∴△APO≌△BHO(AAS),∴AP=BH,OP=OH,∴BH+BQ=AP+BQ=PQ,∴PQ=QH=,∵∠PQH=90°,∴PH=PQ=12,∵OP=OH,∠PQH=90°,∴OQ=PH=6.故答案為:6【點(diǎn)睛】本題主要考查了全等三角形的判定和性質(zhì),等腰三角形和直角三角形的性質(zhì),熟練掌握全等三角形的判定和性質(zhì)定理,等腰三角形和直角三角形的性質(zhì)定理是解題的關(guān)鍵.3、48【解析】【分析】根據(jù)題意可得:,再由平行四邊形的面積公式整理可得:,根據(jù)兩個(gè)等式可得:,代入平行四邊形面積公式即可得.【詳解】解:∵?ABCD的周長(zhǎng):,∴,∵于E,于F,,,∴,整理得:,∴,∴,∴?ABCD的面積:,故答案為:48.【點(diǎn)睛】題目主要考查平行四邊形的性質(zhì)及運(yùn)用方程思想進(jìn)行求解線段長(zhǎng),理解題意,熟練運(yùn)用平行四邊形的性質(zhì)及其面積公式是解題關(guān)鍵.4、##【解析】【分析】首先證明四邊四邊形ABCD是菱形,作出F關(guān)于AB的對(duì)稱點(diǎn)M,再過(guò)M作ME′⊥AD,交AB于點(diǎn)P′,此時(shí)P′E′+P′F最小,求出ME即可.【詳解】解:作出F關(guān)于AB的對(duì)稱點(diǎn)M,再過(guò)M作ME′⊥AD,交AB于點(diǎn)P′,此時(shí)P′E′+P′F最小,此時(shí)P′E′+P′F=ME′,過(guò)點(diǎn)A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四邊形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=AB=1,由勾股定理可得,CH=,∵×AB×CH=×BC×AN,可得AN=,∴ME′=AN=,∴PE+PF最小為.故答案為:.【點(diǎn)睛】本題考查翻折變換,等腰三角形的性質(zhì),軸對(duì)稱?最短問(wèn)題等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考??碱}型.5、4【解析】【分析】過(guò)點(diǎn)O作OG⊥AB,垂足為G,過(guò)點(diǎn)O作OH⊥BC,垂足為H,把四邊形的面積轉(zhuǎn)化為正方形OGBH的面積,等于正方形ABCD面積的.【詳解】如圖,過(guò)點(diǎn)O作OG⊥AB,垂足為G,過(guò)點(diǎn)O作OH⊥BC,垂足為H,∵四邊形ABCD的對(duì)角線交點(diǎn)為O,∴OA=OC,∠ABC=90°,AB=BC,∴OG∥BC,OH∥AB,∴四邊形OGBH是矩形,OG=OH=,∠GOH=90°,∴=4,∵∠FOH+∠FOG=90°,∠EOG+∠FOG=90°,∴∠FOH=∠EOG,∵∠OGE=∠OHF=90°,OG=OH,∴△OGE≌△OHF,∴,∴,∴=4,故答案為:4.【點(diǎn)睛】本題考查了正方形的性質(zhì),三角形的全等與性質(zhì),補(bǔ)形法計(jì)算面積,熟練掌握正方形的性質(zhì),靈活運(yùn)用補(bǔ)形法計(jì)算面積是解題的關(guān)鍵.6、####【解析】【分析】根據(jù)勾股定理求出AC,根據(jù)矩形性質(zhì)得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據(jù)三角形中位線求出即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:(cm),∴DO=5cm,∵點(diǎn)E、F分別是AO、AD的中點(diǎn),∴EF=OD=2.5cm,故答案為:2.5.【點(diǎn)睛】本題考查了矩形的性質(zhì)的應(yīng)用,勾股定理,三角形中位線的應(yīng)用,解本題的關(guān)鍵是求出OD長(zhǎng)及證明EF=OD.7、【解析】【分析】作PM⊥AD于M,交BC于N,根據(jù)矩形的性質(zhì)可得S△PEB=S△PFD即可求解.【詳解】解:作PM⊥AD于M,交BC于N.則有四邊形AEPM,四邊形DFPM,四邊形CFPN,四邊形BEPN都是矩形,,∴,,∴S陰=9+9=18,故答案為:18.【點(diǎn)睛】本題考查矩形的性質(zhì)、三角形的面積等知識(shí),解題的關(guān)鍵是證明.8、【解析】【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個(gè)正方形可得到一個(gè)陰影部分,則n個(gè)這樣的正方形重疊部分即為(n-1)個(gè)陰影部分的和.【詳解】解:由題意可得一個(gè)陰影部分面積等于正方形面積的,即是,n個(gè)這樣的正方形重疊部分(陰影部分)的面積和為:.故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),解題的關(guān)鍵是得到n個(gè)這樣的正方形重疊部分(陰影部分)的面積和的計(jì)算方法,難點(diǎn)是求得一個(gè)陰影部分的面積.9、##【解析】【分析】由折疊及軸對(duì)稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,先證△ABF≌△DAE,推出AF的長(zhǎng),再利用勾股定理求出BF的長(zhǎng),最后在Rt△ABF中利用面積法可求出AH的長(zhǎng),可進(jìn)一步求出AG的長(zhǎng),GE的長(zhǎng).【詳解】解:∵四邊形ABCD為正方形,∴AB=AD=12,∠BAD=∠D=90°,由折疊及軸對(duì)稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF==13,S△ABF=AB?AF=BF?AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE-AG=13-=,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),軸對(duì)稱的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,面積法求線段的長(zhǎng)度等,解題關(guān)鍵是能夠靈活運(yùn)用正方形的性質(zhì)和軸對(duì)稱的性質(zhì).10、15或24或【解析】【分析】分三種情形討論求解即可.【詳解】解:①如圖1中,當(dāng)NM=ND時(shí),∴∠NDM=∠NMD,∵∠MND=∠CBD,∴∠BDN=∠BND,∴BD=BN==15;②如圖2中,當(dāng)DM=DN時(shí),此時(shí)M與B重合,∴BC=CN=12,∴BN=24;③如圖3中,當(dāng)MN=MD時(shí),∴∠NDM=∠MND,∵∠MND=∠CBD,∴∠NDM=∠MND=∠CBD,∴BN=DN,設(shè)BN=DN=x,在Rt△DNC中,∵DN2=CN2+CD2,∴x2=(12-x)2+92,∴x=,綜上,當(dāng)DMN是等腰三角形時(shí),線段BN的長(zhǎng)為15或24或.故答案為:15或24或.【點(diǎn)睛】本題考查了矩形的性質(zhì)、等腰三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用分類(lèi)討論的思想思考問(wèn)題,注意不能漏解.三、解答題1、(1)見(jiàn)解析;(2)當(dāng)∠B1FE=60°時(shí),四邊形EFGB為菱形,理由見(jiàn)解析【分析】(1)由題意,,結(jié)合,得,同理可得,即,結(jié)合,依據(jù)平行四邊形的判定定理即可證明四邊形BEFG是平行四邊形;(2)根據(jù)菱形的性質(zhì)可得,結(jié)合(1)中結(jié)論得出為等邊三角形,依據(jù)等邊三角形的性質(zhì)及(1)中結(jié)論即可求出角的大?。驹斀狻孔C明:(1)∵,∴.又∵,∴.∴.同理可得:.∴,又∵,∴四邊形BEFG是平行四邊形;(2)當(dāng)時(shí),四邊形EFGB為菱形.理由如下:∵四邊形BEFG是菱形,∴,由(1)得:,∴,∴為等邊三角形,∴,∴.【點(diǎn)睛】題目主要考查平行四邊形和菱形的判定定理和性質(zhì),矩形的折疊問(wèn)題,等邊三角形的性質(zhì),熟練掌握特殊四邊形的判定和性質(zhì)是解題關(guān)鍵.2、(1)見(jiàn)解析;(2)PQ的長(zhǎng)不變,見(jiàn)解析;(3)AB+BF=PB【分析】(1)連接PC,由正方形的性質(zhì)得到,,然后依據(jù)全等三角形的判定定理證明,由全等三角形的性質(zhì)可知,,接下來(lái)利用四邊形的內(nèi)角和為360°可證明,于是得到,故此可證明;(2)連接AC交BD于點(diǎn)O,依據(jù)正方形的性質(zhì)可知為等腰直角三角形,于是可求得AO的長(zhǎng),接下來(lái),證明,依據(jù)全等三角形的性質(zhì)可得到;(3)過(guò)點(diǎn)P作,,垂足分別為M,N,首先證明為等腰直角三角形于是得到,由角平分線的性質(zhì)可得到,然后再依據(jù)直角三角形全等的證明方法證明可得到,,于是將可轉(zhuǎn)化為的長(zhǎng).【詳解】解:(1)證明:連接PC,如圖所示:∵ABCD為正方形,∴,,在和中,,∴,∴,,∵,∴.∵,∴.∴.∴,∴;(2)PQ的長(zhǎng)不變.理由:連接AC交BD于點(diǎn)O,如圖所示:∵,∴.∵,∴.∴.又∵四邊形ABCD為正方形,∴,.在和中,,∴.∴;(3)如圖所示:過(guò)點(diǎn)P作,,垂足分別為M,N.∵四邊形ABCD為正方形,∴.∵,∴,∴.∵BD平分,,,∴.在和中,,∴.∴.∵,∴.∴.【點(diǎn)睛】題目主要考查正方形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理解三角形,等腰三角形的性質(zhì)等,理解題意,作出相應(yīng)輔助線,綜合運(yùn)用這些性質(zhì)定理是解題關(guān)鍵.3、(1)BP=CE,CE⊥BC;(2)仍然成立,見(jiàn)解析;(3)31【分析】(1)連接AC,根據(jù)菱形的性質(zhì)和等邊三角形的性質(zhì)證明△BAP≌△CAE即可證得結(jié)論;(2)(1)中的結(jié)論成立,用(1)中的方法證明△BAP≌△CAE即可;(3)分兩種情形:當(dāng)點(diǎn)P在BD的延長(zhǎng)線上時(shí)或點(diǎn)P在線段DB的延長(zhǎng)線上時(shí),連接AC交BD于點(diǎn)O,由∠BCE=90°,根據(jù)勾股定理求出CE的長(zhǎng)即得到BP的長(zhǎng),再求AO、PO、PD的長(zhǎng)及等邊三角形APE的邊長(zhǎng)可得結(jié)論.【詳解】解:(1)如圖1,連接AC,延長(zhǎng)CE交AD于點(diǎn)H,∵四邊形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等邊三角形,∴AB=AC,∠BAC=60°;∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠BAP=∠CAE=60°﹣∠PAC,∴△BAP≌△CAE(SAS),∴BP=CE;∵四邊形ABCD是菱形,∴∠ABP=∠ABC=30°,∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案為:BP=CE,CE⊥BC;(2)(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立,理由如下:如圖2中,連接AC,設(shè)CE與AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等邊三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等邊三角形,∴AP=AE,∠PAE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE(SAS),∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD;∴(1)中的結(jié)論:BP=CE,CE⊥AD仍然成立;(3)如圖3中,當(dāng)點(diǎn)P在BD的延長(zhǎng)線上時(shí),連接AC交BD于點(diǎn)O,連接CE,BE,作EF⊥AP于F,∵四邊形ABCD是菱形,∴AC⊥BDBD平分∠ABC,∵∠ABC=60°,AB=2,∴∠ABO=30°,∴AO=AB

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論