2025年黑龍江省綏芬河市中考數(shù)學(xué)考前沖刺練習(xí)附完整答案詳解【奪冠】_第1頁
2025年黑龍江省綏芬河市中考數(shù)學(xué)考前沖刺練習(xí)附完整答案詳解【奪冠】_第2頁
2025年黑龍江省綏芬河市中考數(shù)學(xué)考前沖刺練習(xí)附完整答案詳解【奪冠】_第3頁
2025年黑龍江省綏芬河市中考數(shù)學(xué)考前沖刺練習(xí)附完整答案詳解【奪冠】_第4頁
2025年黑龍江省綏芬河市中考數(shù)學(xué)考前沖刺練習(xí)附完整答案詳解【奪冠】_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

黑龍江省綏芬河市中考數(shù)學(xué)考前沖刺練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、拋物線的對稱軸為直線.若關(guān)于的一元二次方程(為實數(shù))在的范圍內(nèi)有實數(shù)根,則的取值范圍是()A. B. C. D.2、以原點O為圓心的圓交x軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內(nèi)⊙O上的一點,若∠DAB=25°,則∠OCD=(

).A.50° B.40° C.70° D.30°3、已知點在半徑為8的外,則(

)A. B. C. D.4、正方形的邊長為4,若邊長增加x,那么面積增加y,則y關(guān)于x的函數(shù)表達式為(

)A. B. C. D.5、已知學(xué)校航模組設(shè)計制作的火箭升空高度h(m)與飛行時間t(s)滿足函數(shù)表達式h=﹣t2+24t+1,則下列說法中正確的是(

)A.點火后1s和點火后3s的升空高度相同B.點火后24s火箭落于地面C.火箭升空的最大高度為145mD.點火后10s的升空高度為139m二、多選題(5小題,每小題3分,共計15分)1、一個兩位數(shù),十位數(shù)字與個位數(shù)字之和是5,把這個數(shù)的個位數(shù)字與十位數(shù)字對調(diào)后,所得的新的兩位數(shù)與原來的兩位數(shù)的乘積是736,原來的兩位數(shù)是(

)A.23 B.32 C. D.2、二次函數(shù)(,,為常數(shù),)的部分圖象如圖所示,圖象頂點的坐標(biāo)為,與軸的一個交點在點和點之間,給出的四個結(jié)論中正確的有(

)A. B.C. D.時,方程有解3、二次函數(shù)y=ax2+bx+c的部分對應(yīng)值如下表:以下結(jié)論正確的是(

)x…﹣3﹣20135…y…70﹣8﹣9﹣57…A.拋物線的頂點坐標(biāo)為(1,﹣9);B.與y軸的交點坐標(biāo)為(0,﹣8);C.與x軸的交點坐標(biāo)為(﹣2,0)和(2,0);D.當(dāng)x=﹣1時,對應(yīng)的函數(shù)值y為﹣5.4、二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(-1,n),其部分圖象如圖所示.下列結(jié)論正確的是(

)A.B.C.若,是拋物線上的兩點,則D.關(guān)于x的方程無實數(shù)根5、在中,,,且關(guān)于x的方程有兩個相等的實數(shù)根,以下結(jié)論正確的是(

)A.AC邊上的中線長為1 B.AC邊上的高為C.BC邊上的中線長為 D.外接圓的半徑是2第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、某班共有36名同學(xué),其中男生16人,喜歡數(shù)學(xué)的同學(xué)有12人,喜歡體育的同學(xué)有24人.從該班同學(xué)的學(xué)號中隨意抽取1名同學(xué),設(shè)這名同學(xué)是女生的可能性為a,這名同學(xué)喜歡數(shù)學(xué)的可能性為b,這名同學(xué)喜歡體育的可能性為c,則a,b,c的大小關(guān)系是___________.2、如圖,在一塊長為22m,寬為14m的矩形空地內(nèi)修建三條寬度相等的小路(陰影部分),其余部分種植花草.若花草的種植面積為240m2,則小路的寬為________m.3、如圖1所示的圖形是一個軸對稱圖形,且每個角都是直角,長度如圖所示,小明按圖2所示方法玩拼圖游戲,兩兩相扣,相互間不留空隙,那么小明用9個這樣的圖形(圖1)拼出來的圖形的總長度是_______(結(jié)果用含、代數(shù)式表示).4、如圖,是等邊三角形,點D為BC邊上一點,,以點D為頂點作正方形DEFG,且,連接AE,AG.若將正方形DEFG繞點D旋轉(zhuǎn)一周,當(dāng)AE取最小值時,AG的長為________.5、若點A(m,5)與點B(-4,n)關(guān)于原點成中心對稱,則m+n=________.四、解答題(6小題,每小題10分,共計60分)1、如圖,矩形ABCD中,AB=2cm,BC=3cm,點E從點B沿BC以2cm/s的速度向點C移動,同時點F從點C沿CD以1cm/s的速度向點D移動,當(dāng)E,F(xiàn)兩點中有一點到達終點時,另一點也停止運動.當(dāng)△AEF是以AF為底邊的等腰三角形時,求點E運動的時間.2、在數(shù)學(xué)活動課上,王老師要求學(xué)生將圖1所示的3×3正方形方格紙,剪掉其中兩個方格,使之成為軸對稱圖形.規(guī)定:凡通過旋轉(zhuǎn)能重合的圖形視為同一種圖形,如圖2的四幅圖就視為同一種設(shè)計方案(陰影部分為要剪掉部分)請在圖中畫出4種不同的設(shè)計方案,將每種方案中要剪掉的兩個方格涂黑(每個3×3的正方形方格畫一種,例圖除外)3、如圖,⊙O的半徑弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.已知,.(1)求⊙O半徑的長;(2)求EC的長.4、已知關(guān)于的一元二次方程.(1)求證:方程總有兩個實數(shù)根;(2)若方程的兩個實數(shù)根都為正整數(shù),求這個方程的根.5、如圖1,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0).(1)求該拋物線所對應(yīng)的函數(shù)解析式;(2)如圖2,該拋物線與y軸交于點C,頂點為F,點D(2,3)在該拋物線上.①求四邊形ACFD的面積;②點P是線段AB上的動點(點P不與點A、B重合),過點P作PQ⊥x軸交該拋物線于點Q,連接AQ、DQ,當(dāng)△AQD是直角三角形時,求出所有滿足條件的點Q的坐標(biāo).6、已知拋物線y=ax2+3ax+c(a≠0)與y軸交于點A(1)若a>0①當(dāng)a=1,c=-1,求該拋物線與x軸交點坐標(biāo);②點P(m,n)在二次函數(shù)拋物線y=ax2+3ax+c的圖象上,且n-c>0,試求m的取值范圍;(2)若拋物線恒在x軸下方,且符合條件的整數(shù)a只有三個,求實數(shù)c的最小值;(3)若點A的坐標(biāo)是(0,1),當(dāng)-2c<x<c時,拋物線與x軸只有一個公共點,求a的取值范圍.-參考答案-一、單選題1、A【解析】【分析】根據(jù)給出的對稱軸求出函數(shù)解析式為,將一元二次方程的實數(shù)根可以看做與函數(shù)的有交點,再由的范圍確定的取值范圍即可求解;【詳解】∵的對稱軸為直線,∴,∴,∴一元二次方程的實數(shù)根可以看做與函數(shù)的有交點,∵方程在的范圍內(nèi)有實數(shù)根,當(dāng)時,,當(dāng)時,,函數(shù)在時有最小值2,∴,故選A.【考點】本題考查二次函數(shù)的圖象及性質(zhì);能夠?qū)⒎匠痰膶崝?shù)根問題轉(zhuǎn)化為二次函數(shù)與直線的交點問題,借助數(shù)形結(jié)合解題是關(guān)鍵.2、C【解析】【分析】根據(jù)圓周角定理求出∠DOB,根據(jù)等腰三角形性質(zhì)求出∠OCD=∠ODC,根據(jù)三角形內(nèi)角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點】本題考查了圓周角定理,等腰三角形性質(zhì),三角形內(nèi)角和定理的應(yīng)用,主要考查學(xué)生的推理能力,題目比較典型,難度適中.3、A【解析】【分析】根據(jù)點P與⊙O的位置關(guān)系即可確定OP的范圍.【詳解】解:∵點P在圓O的外部,∴點P到圓心O的距離大于8,故選:A.【考點】本題主要考查點與圓的位置關(guān)系,關(guān)鍵是要牢記判斷點與圓的位置關(guān)系的方法.4、C【解析】【分析】加的面積=新正方形的面積-原正方形的面積,把相關(guān)數(shù)值代入化簡即可.【詳解】解:∵新正方形的邊長為x+4,原正方形的邊長為4,∴新正方形的面積為(x+4)2,原正方形的面積為16,∴y=(x+4)2-16=x2+8x,故選:C.【考點】本題考查列二次函數(shù)關(guān)系式;得到增加的面積的等量關(guān)系是解決本題的關(guān)鍵.5、C【解析】【分析】分別求出t=1、3、24、10時h的值可判斷A、B、D三個選項,將解析式配方成頂點式可判斷C選項.【詳解】解:A、當(dāng)t=1時,h=24;當(dāng)t=3時,h=64;所以點火后1s和點火后3s的升空高度不相同,此選項錯誤;B、當(dāng)t=24時,h=1≠0,所以點火后24s火箭離地面的高度為1m,此選項錯誤;C、由h=﹣t2+24t+1=﹣(t-12)2+145知火箭升空的最大高度為145m,此選項正確;D、當(dāng)t=10時,h=141m,此選項錯誤;故選:C.【考點】本題主要考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練掌握二次函數(shù)的性質(zhì).二、多選題1、AB【解析】【分析】設(shè)原來的兩位數(shù)十位上的數(shù)字為,則個位上的數(shù)字為,根據(jù)所得到的新兩位數(shù)與原來的兩位數(shù)的乘積為736,可列出方程求解即可.【詳解】解:設(shè)原來的兩位數(shù)十位上的數(shù)字為,則個位上的數(shù)字為,依題意可得:,解得:,,當(dāng)時,,符合題意,原來的兩位數(shù)是23,當(dāng)時,,符合題意,原來的兩位數(shù)是32,∴原來的兩位數(shù)是23或32,故選AB.【考點】本題考查了一元二次方程的應(yīng)用,解題的關(guān)鍵是能正確用每一數(shù)位上的數(shù)字表示這個兩位數(shù).2、BCD【解析】【分析】根據(jù)拋物線與軸有兩個交點,可知,即可判斷A選項;根據(jù)時,,即可判斷B選項;根據(jù)對稱軸,即可判斷C選項;D.根據(jù)拋物線的頂點坐標(biāo)為,函數(shù)有最大即可判定D.【詳解】解:由圖象可知,拋物線開口向下,對稱軸在軸的右側(cè),與軸的交點在軸的負半軸,∵拋物線與軸有兩個交點,∴,∴,即,故A錯誤;由圖象可知,時,,∴,故B正確;∵拋物線的頂點坐標(biāo)為,∴,,∵,∴,即,故C正確;∵拋物線的開口向下,頂點坐標(biāo)為,∴(為任意實數(shù)),即時,方程有解.故D正確.故選BCD.【考點】本題主要考查了二次函數(shù)的性質(zhì)、二次函數(shù)圖像等知識點,掌握二次函數(shù)的性質(zhì)與解析式的關(guān)系是解答本題的關(guān)鍵.3、ABD【解析】【分析】由已知二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)值y的部分對應(yīng)值可知:x=-3與x=

5時,都是y

=

7,由拋物線的對稱性可知:拋物線的對稱軸為直線x=,根據(jù)對稱軸和圖表可得到頂點坐標(biāo),拋物線與y軸的交點坐標(biāo),拋物線與x軸的另一個交點坐標(biāo)以及x=﹣1時,對應(yīng)的函數(shù)值,判斷即可.【詳解】由已知二次函數(shù)y=ax2+bx+c的自變量x與函數(shù)值y的部分對應(yīng)值可知:x=-3與x=

5時,都是y

=

7,由拋物線的對稱性可知:拋物線的對稱軸為直線x=,拋物線的頂點坐標(biāo)為(1,-

9),A正確,符合題意;由圖表可知拋物線與y軸的交點坐標(biāo)為(0,-8),B正確,符合題意;拋物線過點(-2,0),根據(jù)拋物線的對稱性可知:拋物線與x軸的另一個交點坐標(biāo)為(4,0),C錯誤,不符合題意;由拋物線的對稱性可知:當(dāng)x=-1時,對應(yīng)的函數(shù)值與x=3時相同,對應(yīng)的函數(shù)值y

=-5,D正確,符合題意,故答案為:ABD.【考點】此題主要考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握拋物線的圖象和性質(zhì),同時會根據(jù)圖象得到信息.4、CD【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)及與x軸另一交點的位置,即可判定A;當(dāng)x=2時,即可判定B;根據(jù)對稱性及二次函數(shù)的性質(zhì),可判定C;根據(jù)平移后與x軸有無交點,可判定D.【詳解】解:由圖象可知:該二次函數(shù)圖象的對稱軸為直線,∴b=2a,由圖象可知:該二次函數(shù)圖象與x軸的左側(cè)交點在-3與-2之間,故與x軸的另一個交點在0與1之間,∴當(dāng)x=1時,y<0,即a+b+c<0,3a+c<0,故A錯誤;當(dāng)x=-2時,y>0,即4a-2b+c>0,故B錯誤;點關(guān)于對稱軸對稱的點的坐標(biāo)為,即,在對稱軸的左側(cè)y隨x的增大而增大,故,故C正確;該二次函數(shù)的頂點坐標(biāo)為(?1,n),將函數(shù)向下平移n+1個單位,函數(shù)圖象與x軸無交點,∴方程無實數(shù)根,故D正確,故選:CD.【考點】本題考查了二次函數(shù)圖象與性質(zhì),根據(jù)二次函數(shù)的圖象判定式子是否成立,解題的關(guān)鍵是從圖象中找到相關(guān)信息.5、BCD【解析】【分析】由根的判別式求出AC=b=4,由勾股定理的逆定理證出△ABC是直角三角形,再由直角三角形斜邊上的中線性質(zhì)即可得出AC的長,利用等積法求出斜邊上的高,根據(jù)勾股定理求出BC邊上的中線,利用直角三角形外接圓的半徑是斜邊的一半得出外接圓的半徑.【詳解】∵一元二次方程x2-4x+b=0有兩個相等的實數(shù)根,∴(-4)2-4b=0,∴b=4.∴AC=4,∴AB2+BC2=AC2,∵△ABC為直角三角形,∵直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),∴AC邊上的中線長=2,故A錯誤;∵ABBC=ACh∴22=4h∴h=故B正確;BC邊上的中線==故C正確直角三角形外接圓的半徑等于斜邊的一半,所以為2故D正確.故答案為:BCD【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式Δ=b2-4ac:當(dāng)Δ=0,方程有兩個相等的實數(shù)根;還考查了利用勾股定理判定直角三角形及勾股定理的應(yīng)用,并考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì)以及三角形的外接圓的性質(zhì).三、填空題1、c>a>b【解析】【分析】根據(jù)概率公式分別求出各事件的概率,故可求解.【詳解】依題意可得從該班同學(xué)的學(xué)號中隨意抽取1名同學(xué),設(shè)這名同學(xué)是女生的可能性為,這名同學(xué)喜歡數(shù)學(xué)的可能性為,這名同學(xué)喜歡體育的可能性為,∵>>∴a,b,c的大小關(guān)系是c>a>b故答案為:c>a>b.【考點】本題考查概率公式的基本計算,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.2、2【解析】【分析】設(shè)小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,根據(jù)花草的種植面積為240m2,即可得出關(guān)于x的一元二次方程,解之取其符合題意的值即可得出結(jié)論.【詳解】解:設(shè)小路寬為xm,則種植花草部分的面積等同于長(22-x)m,寬(14-x)m的矩形的面積,依題意得:(22-x)(14-x)=240,整理得:x2-36x+68=0,解得:x1=2,x2=34(不合題意,舍去).故答案為:2.【考點】本題考查了一元二次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.3、a+8b【解析】【分析】觀察可知兩個拼接時,總長度為2a-(a-b),三個拼接時,總長度為3a-2(a-b),由此可得用9個拼接時的總長度為9a-8(a-b),由此即可得.【詳解】觀察圖形可知兩個拼接時,總長度為2a-(a-b),三個拼接時,總長度為3a-2(a-b),四個拼接時,總長度為4a-3(a-b),…,所以9個拼接時,總長度為9a-8(a-b)=a+8b,故答案為a+8b.【考點】本題考查了規(guī)律題——圖形的變化類,通過推導(dǎo)得出總長度與個數(shù)間的規(guī)律是解題的關(guān)鍵.4、8【解析】【分析】過點A作于M,由已知得出,得出,由等邊三角形的性質(zhì)得出,,得出,在中,由勾股定理得出,當(dāng)正方形DEFG繞點D旋轉(zhuǎn)到點E、A、D在同一條直線上時,,即此時AE取最小值,在中,由勾股定理得出,在中,由勾股定理即可得出.【詳解】過點A作于M,∵,∴,∴,∵是等邊三角形,∴,∵,∴,∴,在中,,當(dāng)正方形DEFG繞點D旋轉(zhuǎn)到點E、A、D在同一條直線上時,,即此時AE取最小值,在中,,∴在中,;故答案為8.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)、等邊三角形的性質(zhì)、勾股定理以及最小值問題;熟練掌握正方形的性質(zhì)和等邊三角形的性質(zhì)是解題的關(guān)鍵.5、【解析】【分析】根據(jù)關(guān)于原點對稱的點的坐標(biāo)特征:關(guān)于原點對稱的點,橫縱坐標(biāo)都互為相反數(shù),進行求解即可.【詳解】解:∵點A(m,5)與點B(-4,n)關(guān)于原點成中心對稱,∴m=4,n=-5,∴m+n=-5+4=-1,故答案為:-1.【考點】本題主要考查了關(guān)于原點對稱點的坐標(biāo)特征,代數(shù)式求值,熟知關(guān)于原點對稱的點的坐標(biāo)特征是解題的關(guān)鍵.四、解答題1、(6-)s【解析】【分析】設(shè)點E運動的時間是x秒.根據(jù)題意可得方程,解方程即可得到結(jié)論.【詳解】解:設(shè)點E運動的時間是xs.根據(jù)題意可得22+(2x)2=(3-2x)2+x2,解這個方程得x1=6-,x2=6+,∵3÷2=1.5(s),2÷1=2(s),∴兩點運動了1.5s后停止運動.∴x=6-.答:當(dāng)△AEF是以AF為底邊的等腰三角形時,點E運動的時間是(6-)s.【考點】本題考查了一元二次方程的應(yīng)用,考查了矩形的性質(zhì),等腰三角形的判定及性質(zhì),勾股定理的運用.2、見解析.【解析】【分析】根據(jù)軸對稱圖形和旋轉(zhuǎn)對稱圖形的概念作圖即可得.【詳解】解:根據(jù)剪掉其中兩個方格,使之成為軸對稱圖形;即如圖所示:【考點】本題主要考查利用旋轉(zhuǎn)設(shè)計圖案,解題的關(guān)鍵是掌握軸對稱圖形和旋轉(zhuǎn)對稱圖形的概念.3、(1);(2)【解析】【分析】(1)根據(jù)垂徑定理可得,再由勾股定理可求得半徑的長;(2)連接構(gòu)造出,利用勾股定理可求得,再利用勾股定理解即可求得答案.【詳解】解:(1)∵,∴∴設(shè)的半徑∴∵在中,∴∴∴半徑的長為.(2)連接,如圖:∵是的直徑∴,∵∴在中,∵∴在中,∴.【考點】本題考查了垂徑定理、勾股定理、圓周角定理等,做出合適的輔助線是解題的關(guān)鍵.4、證明見祥解;.【解析】【分析】(1)先求出判別式,再配方變?yōu)榧纯?;?)用十字相乘法可以求出根的表達式,方程的兩個實數(shù)根都為正整數(shù),列不等式組,即可得出m的值.【詳解】證明:∵是關(guān)于的一元二次方程,,∴此方程總有兩個實數(shù)根.解:∵,∴,∴,.∵方程的兩個實數(shù)根都為正整數(shù),,解得,,∴..【考點】本題考查了根的判別式,配方為平方式,根據(jù)方程的兩個實數(shù)根都為正整數(shù),列出不等式組,求出是解題的關(guān)鍵.5、(1)y=﹣x2+2x+3;(2)①S四邊形ACFD=4;②Q點坐標(biāo)為(1,4)或(,)或(,).【解析】【分析】此題涉及的知識點是拋物線的綜合應(yīng)用,難度較大,需要有很好的邏輯思維,解題時先根據(jù)已知點的坐標(biāo)列方程求出函數(shù)解析式,然后再根據(jù)解析式和已知條件求出四邊形的面積和點的坐標(biāo).【詳解】(1)由題意可得,解得,∴拋物線解析式為y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x軸,∵A(﹣1,0),∴S四邊形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵點P在線段AB上,∴∠DAQ不可能為直角,∴當(dāng)△AQD為直角三角形時,有∠ADQ=90°或∠AQD=90°,i.當(dāng)∠ADQ=90°時,則DQ⊥AD,∵A(﹣1,0),D(2,3),∴直線AD解析式為y=x+1,∴可設(shè)直線DQ解析式為y=﹣x+b′,把D(2,3)代入

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論