版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》章節(jié)測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、下列說(shuō)法:①若,則為的中點(diǎn)②若,則是的平分線③,則④若,則,其中正確的有(
)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)2、如圖是用直尺和圓規(guī)作一個(gè)角等于已知角的示意圖,說(shuō)明的依據(jù)是(
)A. B. C. D.3、如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點(diǎn)P,過(guò)P作PF⊥AD交BC的延長(zhǎng)線于點(diǎn)F,交AC于點(diǎn)H,則下列結(jié)論:①∠APB=135°;②BF=BA;③PH=PD;④連接CP,CP平分∠ACB,其中正確的是()A.①②③ B.①②④ C.①③④ D.①②③④4、如圖,在和中,,,,線段BC的延長(zhǎng)線交DE于點(diǎn)F,連接AF.若,,,則線段EF的長(zhǎng)度為(
)A.4 B. C.5 D.5、如圖,在中,點(diǎn)D是BC邊上一點(diǎn),已知,,CE平分交AB于點(diǎn)E,連接DE,則的度數(shù)為(
)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,中,以點(diǎn)O為圓心,任意長(zhǎng)為半徑作弧,交于點(diǎn)M,交于點(diǎn)N,分別以點(diǎn)M,N為圓心,以大于的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)C,作射線,過(guò)點(diǎn)C作于點(diǎn)D.交于點(diǎn)E,若,則的度數(shù)為_(kāi)______________.2、在△ABC中,∠C=90°,AD是△ABC的角平分線,BC=6、AC=8、AB=10,則點(diǎn)D到AB的距離為_(kāi)______.3、如圖所示,在中,D是的中點(diǎn),點(diǎn)A、F、D、E在同一直線上.請(qǐng)?zhí)砑右粋€(gè)條件,使(不再添其他線段,不再標(biāo)注或使用其他字母),并給出證明.你添加的條件是______4、如圖所示,點(diǎn)在一塊直角三角板上(其中),于點(diǎn),于點(diǎn),若,則_________度.5、在ABC中,AB=AC,點(diǎn)D在BC上(不與點(diǎn)B,C重合).只需添加一個(gè)條件即可證明ABD≌ACD,這個(gè)條件可以是________(寫(xiě)出一個(gè)即可)三、解答題(5小題,每小題10分,共計(jì)50分)1、(1)閱讀理解:?jiǎn)栴}:如圖1,在四邊形中,對(duì)角線平分,.求證:.思考:“角平分線+對(duì)角互補(bǔ)”可以通過(guò)“截長(zhǎng)、補(bǔ)短”等構(gòu)造全等去解決問(wèn)題.方法1:在上截取,連接,得到全等三角形,進(jìn)而解決問(wèn)題;方法2:延長(zhǎng)到點(diǎn),使得,連接,得到全等三角形,進(jìn)而解決問(wèn)題.結(jié)合圖1,在方法1和方法2中任選一種,添加輔助線并完成證明.(2)問(wèn)題解決:如圖2,在(1)的條件下,連接,當(dāng)時(shí),探究線段,,之間的數(shù)量關(guān)系,并說(shuō)明理由;(3)問(wèn)題拓展:如圖3,在四邊形中,,,過(guò)點(diǎn)D作,垂足為點(diǎn)E,請(qǐng)直接寫(xiě)出線段、、之間的數(shù)量關(guān)系.2、如圖,小明和小華兩家位于A,B兩處,隔河相望.要測(cè)得兩家之間的距離,小明設(shè)計(jì)如下方案:從點(diǎn)B出發(fā)沿河岸畫(huà)一條射線BF,在BF上截取,過(guò)點(diǎn)D作,取點(diǎn)E使E,C,A在同一條直線上,則DE的長(zhǎng)就是A,B之間的距離,說(shuō)明他設(shè)計(jì)的道理.3、如圖,在中,,,分別過(guò)點(diǎn)B,C向過(guò)點(diǎn)A的直線作垂線,垂足分別為點(diǎn)E,F(xiàn).(1)如圖①,過(guò)點(diǎn)A的直線與斜邊BC不相交時(shí),求證:①;②.(2)如圖②,其他條件不變,過(guò)點(diǎn)A的直線與斜邊BC相交時(shí),若,,試求EF的長(zhǎng).4、已知:如圖,AB=DE,AB∥DE,BE=CF,且點(diǎn)B、E、C、F都在一條直線上,求證:AC∥DF.5、如圖,等腰三角形中,,.作于點(diǎn),將線段繞著點(diǎn)順時(shí)針旋轉(zhuǎn)角后得到線段,連接.(1)求證:;(2)延長(zhǎng)線段,交線段于點(diǎn).求的度數(shù)(用含有的式子表示).-參考答案-一、單選題1、A【解析】【分析】根據(jù)直線中點(diǎn)、角平分線、有理數(shù)大小比較以及絕對(duì)值的性質(zhì),逐一判定即可.【詳解】當(dāng)三點(diǎn)不在同一直線上的時(shí)候,點(diǎn)C不是AB的中點(diǎn),故錯(cuò)誤;當(dāng)OC位于∠AOB的內(nèi)部時(shí)候,此結(jié)論成立,故錯(cuò)誤;當(dāng)為負(fù)數(shù)時(shí),,故錯(cuò)誤;若,則,故正確;故選:A.【考點(diǎn)】此題主要考查直線中點(diǎn)、角平分線、有理數(shù)大小比較以及絕對(duì)值的性質(zhì),熟練掌握,即可解題.2、B【解析】【分析】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D'.【詳解】解:由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據(jù)SSS可判定△COD≌△C'O'D',故選B.【考點(diǎn)】本題主要考查了尺規(guī)作圖—作已知角相等的角,解題的關(guān)鍵在于能夠熟練掌握全等三角形的判定條件.3、D【解析】【分析】根據(jù)三角形內(nèi)角和定理以及角平分線定義判斷①;根據(jù)全等三角形的判定和性質(zhì)判斷②③;根據(jù)角平分線的判定與性質(zhì)判斷④.【詳解】解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分別平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=(180°-∠ACB)=(180°-90°)=45°,∴∠APB=135°,故①正確.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,PA=PF,故②正確.在△APH和△FPD中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP,PA=PF,∴△APH≌△FPD(ASA),∴PH=PD,故③正確.連接CP,如下圖所示:∵△ABC的角平分線AD、BE相交于點(diǎn)P,∴點(diǎn)P到AB、AC的距離相等,點(diǎn)P到AB、BC的距離相等,∴點(diǎn)P到BC、AC的距離相等,∴點(diǎn)P在∠ACB的平分線上,∴CP平分∠ACB,故④正確,綜上所述,①②③④均正確,故選:D.【考點(diǎn)】本題考查了角平分線的判定與性質(zhì),三角形全等的判定方法,三角形內(nèi)角和定理.掌握相關(guān)性質(zhì)是解題的關(guān)鍵.4、B【解析】【分析】證明,,根據(jù)全等三角形對(duì)應(yīng)邊相等,得到,,由解得,繼而解得,最后由解答.【詳解】解:,,,,,,故選:B.【考點(diǎn)】本題考查全等三角形的判定與性質(zhì)、線段的和差等知識(shí),是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.5、B【解析】【分析】過(guò)點(diǎn)E作于M,于N,于H,如圖,先計(jì)算出,則AE平分,根據(jù)角平分線的性質(zhì)得,再由CE平分得到,則,于是根據(jù)角平分線定理的逆定理可判斷DE平分,再根據(jù)三角形外角性質(zhì)解答即可.【詳解】解:過(guò)點(diǎn)E作于M,于N,于H,如圖,∵,,∴,∴平分,∴,∵平分,∴,∴,∴平分,∴,∵由三角形外角可得:,,∴,而,∴.故選:B.【考點(diǎn)】本題考查了角平分線的性質(zhì)和判定定理,三角形的外角性質(zhì)定理,解決本題的關(guān)鍵是運(yùn)用角平分線定理的逆定理證明DE平分.二、填空題1、65°或65度【解析】【分析】根據(jù)作圖先得出OC平分∠AOB,根據(jù),得出,根據(jù)為的外角,得出,即可求出,根據(jù),得出,即可求解.【詳解】解:根據(jù)作圖可知,OC平分∠AOB,∴,∵,,,為的外角,,,,,.故答案為:.【考點(diǎn)】本題主要考查了角平分線的基本作圖,平行線的性質(zhì),三角形外角的性質(zhì),直角三角形的性質(zhì),根據(jù)題意求出是解題的關(guān)鍵.2、或【解析】【分析】作DE⊥AB于E,如圖,先根據(jù)勾股定理計(jì)算出BC=8,再利用角平分線的性質(zhì)得到DE=DC,設(shè)DE=DC=x,利用面積法得到10x=6(8-x),然后解方程即可.【詳解】解:作DE⊥AB于E,如圖,∵AD是△ABC的一條角平分線,DC⊥AC,DE⊥AB,∴DE=DC,設(shè)DE=DC=x,S△ABD=DE?AB=AC?BD,即10x=8(6-x),解得x=,即點(diǎn)D到AB邊的距離為.故答案為:.【考點(diǎn)】本題考查了角平分線的性質(zhì):角的平分線上的點(diǎn)到角的兩邊的距離相等,由已知能夠注意到D到AB的距離即為DE長(zhǎng)是解決的關(guān)鍵.3、ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF)【解析】【分析】根據(jù)三角形全等的判定方法SAS或AAS或ASA定理添加條件,然后證明即可.【詳解】解:∵D是的中點(diǎn),∴BD=DC①若添加ED=FD在△BDE和△CDF中,,∴△BDE≌△CDF(SAS);②若添加∠E=∠CFD在△BDE和△CDF中,,∴△BDE≌△CDF(AAS);③若添加∠DBE=∠DCF在△BDE和△CDF中,,∴△BDE≌△CDF(ASA);故答案為:ED=FD(答案不唯一,∠E=∠CFD或∠DBE=∠DCF).【考點(diǎn)】本題考查了全等三角形的判定,熟練掌握三角形全等的判定方法是解題的關(guān)鍵.4、15【解析】【分析】根據(jù),,判斷OB是的角平分線,即可求解.【詳解】解:由題意,,,,即點(diǎn)O到BC、AB的距離相等,∴OB是的角平分線,∵,∴.故答案為:15.【考點(diǎn)】本題考查角平分線的定義及判定,熟練掌握“到一個(gè)角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線上”是解題的關(guān)鍵.5、∠BAD=∠CAD(或BD=CD)【解析】【分析】證明ABD≌ACD,已經(jīng)具備根據(jù)選擇的判定三角形全等的判定方法可得答案.【詳解】解:要使則可以添加:∠BAD=∠CAD,此時(shí)利用邊角邊判定:或可以添加:此時(shí)利用邊邊邊判定:故答案為:∠BAD=∠CAD或()【考點(diǎn)】本題考查的是三角形全等的判定,屬開(kāi)放性題,掌握三角形全等的判定是解題的關(guān)鍵.三、解答題1、(1)證明見(jiàn)解析;(2);理由見(jiàn)解析;(3).【解析】【分析】(1)方法1:在上截取,連接,得到全等三角形,進(jìn)而解決問(wèn)題;方法2:延長(zhǎng)到點(diǎn),使得,連接,得到全等三角形,進(jìn)而解決問(wèn)題;(2)延長(zhǎng)到點(diǎn),使,連接,證明,可得,即(3)連接,過(guò)點(diǎn)作于,證明,,進(jìn)而根據(jù)即可得出結(jié)論.【詳解】解:(1)方法1:在上截,連接,如圖.平分,.在和中,,,,.,..,.方法2:延長(zhǎng)到點(diǎn),使得,連接,如圖.平分,.在和中,,.,.,.,,.(2)、、之間的數(shù)量關(guān)系為:.(或者:,).延長(zhǎng)到點(diǎn),使,連接,如圖2所示.由(1)可知,.為等邊三角形.,.,..,為等邊三角形.,.,,即.在和中,,.,,.(3),,之間的數(shù)量關(guān)系為:.(或者:,)解:連接,過(guò)點(diǎn)作于,如圖3所示.,..在和中,,,,.在和中,,.,,.【考點(diǎn)】本題考查了三角形全等的性質(zhì)與判定,正確的添加輔助線是解題的關(guān)鍵.2、見(jiàn)解析【解析】【分析】根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得,然后利用“角角邊”證明和全等,根據(jù)全等三角形對(duì)應(yīng)邊相等解答;【詳解】解:,,在和中,,,,即的長(zhǎng)就是、兩點(diǎn)之間的距離.【考點(diǎn)】本題考查了全等三角形的應(yīng)用,熟練掌握三角形全等的判定方法是解題的關(guān)鍵.3、(1)①見(jiàn)詳解;②見(jiàn)詳解;(2)7【解析】【分析】(1)①由條件可求得∠EBA=∠FAC,利用AAS可證明△ABE≌△CAF;②利用全等三角形的性質(zhì)可得EA=FC,EB=FA,利用線段的和差可證得結(jié)論;(2)同(1)可證明△ABE≌△CAF,可證得EF=FA?EA,代入可求得EF的長(zhǎng).【詳解】(1)證明:①∵BE⊥EF,CF⊥EF,∴∠AEB=∠CFA=90°,∴∠EAB+∠EBA=90°,∵∠BAC=90°,∴∠EAB+∠FAC=90°,∴∠EBA=∠FAC,在△AEB與△CFA中∵,∴△ABE≌△CAF(AAS),②∵△ABE≌△CAF,∴EA=FC,EB=FA,∴EF=AF+AE=BE+CF;(2)解:∵BE⊥AF,CF⊥AF∴∠AEB=∠CFA=90°∴∠EAB+∠EBA=90°∵∠BAC=90°∴∠EAB+∠FAC=90°∴∠EBA=∠FAC,在△AEB與△CFA中,∴△ABE≌△CAF(AAS),∴EA=FC,EB=FA,∴EF=FA?EA=EB?FC=10?3=7.【考點(diǎn)】本題主要考查全等三角形的判定和性質(zhì),掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(zhì)(即全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等)是解題的關(guān)鍵.4、詳見(jiàn)解析【解析】【分析】首先利用平行線的性質(zhì)∠B=∠DEF,再利用SAS得出△ABC≌△DEF,得出∠ACB=∠F,根據(jù)平行線的判定即可得到結(jié)論.【詳解】證明:∵AB∥DE,∴∠B=∠DEC,又∵BE=C
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年撫州職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)考試參考題庫(kù)含詳細(xì)答案解析
- 2026年馬鞍山職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)考試備考題庫(kù)含詳細(xì)答案解析
- 2026年撫州幼兒師范高等專科學(xué)校高職單招職業(yè)適應(yīng)性測(cè)試模擬試題及答案詳細(xì)解析
- 2026年昆明市事業(yè)單位公開(kāi)招聘工作人員(1771人)參考考試試題及答案解析
- 運(yùn)營(yíng)主管職業(yè)規(guī)劃
- 2026秋招:西部礦業(yè)集團(tuán)面試題及答案
- 2026秋招:甘肅藥業(yè)投資集團(tuán)筆試題及答案
- 2026年建筑工地安全合同
- 跨境電商海外倉(cāng)運(yùn)輸服務(wù)協(xié)議2025
- 2026年走廊踢腳線施工協(xié)議
- 2026廣東東莞市厚街鎮(zhèn)第一次招聘編外聘用人員12人考試備考試題及答案解析
- 2026年智能燃?xì)鈭?bào)警器項(xiàng)目營(yíng)銷方案
- 中科宇航招聘筆試題庫(kù)2026
- 醫(yī)院物資采購(gòu)流程及管理規(guī)范手冊(cè)
- 2026年低空管控系統(tǒng)項(xiàng)目投資計(jì)劃書(shū)
- 預(yù)制空心板梁架設(shè)專項(xiàng)施工方案
- 護(hù)理職業(yè)素養(yǎng)與形象
- 農(nóng)村供水題庫(kù)及答案
- 足球隊(duì)組成介紹
- 地震公路交通設(shè)施損壞事件應(yīng)急預(yù)案
- 溝通管理溝通計(jì)劃表
評(píng)論
0/150
提交評(píng)論