版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》必考點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,在△ABC中,點(diǎn)E,F(xiàn)分別是AB,AC的中點(diǎn).已知∠B=55°,則∠AEF的度數(shù)是()A.75° B.60° C.55° D.40°2、如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得點(diǎn)A,C之間的距離為6cm,點(diǎn)B,D之間的距離為8cm,則紙條的寬為()A.5cm B.4.8cm C.4.6cm D.4cm3、菱形ABCD的對角線AC,BD相交于點(diǎn)O,E,F(xiàn)分別是AD,CD邊上的中點(diǎn),連接EF.若EF=,BD=2,則菱形ABCD的面積為()A.2 B. C.6 D.84、如圖所示,正方形ABCD的面積為16,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對角線AC上有一點(diǎn)P,使PD+PE的和最小,則最小值為()A.2 B.3 C.4 D.65、如圖所示,在矩形ABCD中,已知AE⊥BD于E,∠DBC=30°,BE=1cm,則AE的長為()A.3cm B.2cm C.2cm D.cm6、的周長為32cm,AB:BC=3:5,則AB、BC的長分別為()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm7、如圖,陰影部分是將一個(gè)菱形剪去一個(gè)平行四邊形后剩下的,要想知道陰影部分的周長,需要測量一些線段的長,這些線段可以是()A.AF B.AB C.AB與BC D.BC與CD8、如圖,四邊形ABCD中,∠A=60°,AD=2,AB=3,點(diǎn)M,N分別為線段BC,AB上的動(dòng)點(diǎn)(含端點(diǎn),但點(diǎn)M不與點(diǎn)B重合),點(diǎn)E,F(xiàn)分別為DM,MN的中點(diǎn),則EF長度的最大值為()A. B. C. D.9、若一個(gè)直角三角形的周長為,斜邊上的中線長為1,則此直角三角形的面積為()A. B. C. D.10、在平行四邊形ABCD中,∠A=30°,那么∠B與∠A的度數(shù)之比為()A.4:1 B.5:1 C.6:1 D.7:1第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,矩形ABCD的兩條對角線AC,BD交于點(diǎn)O,∠AOB=60°,AB=3,則矩形的周長為_____.2、如圖,矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE翻折至△AFE,連接CF,則CF的長為___.3、如圖,在正方形ABCD中,點(diǎn)O在內(nèi),,則的度數(shù)為______.4、如圖,正方形紙片ABCD的邊長為12,E是邊CD上一點(diǎn),連接AE.折疊該紙片,使點(diǎn)A落在AE上的G點(diǎn),并使折痕經(jīng)過點(diǎn)B,得到折痕BF,點(diǎn)F在AD上.若,則GE的長為__________.5、如圖,四邊形ABCD是矩形,延長DA到點(diǎn)E,使AE=DA,連接EB,點(diǎn)F1是CD的中點(diǎn),連接EF1,BF1,得到△EF1B;點(diǎn)F2是CF1的中點(diǎn),連接EF2,BF2,得到△EF2B;點(diǎn)F3是CF2的中點(diǎn),連接EF3,BF3,得到△EF3B;…;按照此規(guī)律繼續(xù)進(jìn)行下去,若矩形ABCD的面積等于2,則△EFnB的面積為______.(用含正整數(shù)n的式子表示)6、如圖,在正方形ABCD中,AB=4,E為對角線AC上與A,C不重合的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作EF⊥AB于點(diǎn)F,EG⊥BC于點(diǎn)G,連接DE,F(xiàn)G,下列結(jié)論:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值為3.其中正確結(jié)論的序號為__.7、平面直角坐標(biāo)系中,四邊形ABCD的頂點(diǎn)坐標(biāo)分別是A(-3,0),B(0,2),C(3,0),D(0,-2),則四邊形ABCD是__________.8、點(diǎn)D、E分別是△ABC邊AB、AC的中點(diǎn),已知BC=12,則DE=_____9、如圖,在中,,點(diǎn)、、分別是三邊的中點(diǎn),且,則的長度是__________.10、如圖,在四邊形ABCD中,AD//BC,∠B=90°,DE⊥BC于點(diǎn)E,AB=8cm,AD=24cm,BC=26cm,點(diǎn)P從點(diǎn)A出發(fā),沿邊AD以1cm/s的速度向點(diǎn)D運(yùn)動(dòng),與此同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿邊CB以3cm/s的速度向點(diǎn)B運(yùn)動(dòng).當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).連接PQ,過點(diǎn)P作PF⊥BC于點(diǎn)F,則當(dāng)運(yùn)動(dòng)到第__________s時(shí),△DEC≌△PFQ.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,?ABCD的對角線AC,BD相交于點(diǎn)O,點(diǎn)E,點(diǎn)F在線段BD上,且DE=BF.求證:AE∥CF.2、如圖,將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處;再將矩形沿折疊,使點(diǎn)落在點(diǎn)處且過點(diǎn).
(1)求證:四邊形是平行四邊形;(2)當(dāng)是多少度時(shí),四邊形為菱形?試說明理由.3、如圖,在等腰三角形ABC中,AB=BC,將等腰三角形ABC繞頂點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)角a到的位置,AB與相交于點(diǎn)D,AC與分別交于點(diǎn)E,F(xiàn).(1)求證:BCF;(2)當(dāng)C=a時(shí),判定四邊形的形狀并說明理由.4、如圖,在四邊形ABCD中,ABDC,AB=AD,對角線AC,BD交于點(diǎn)O,AC平分∠BAD,過點(diǎn)C作CE⊥AB交AB的延長線于點(diǎn)E,連接OE.(1)求證:四邊形ABCD是菱形;(2)若AB=,BD=2,求OE的長.5、已知如圖,在中,點(diǎn)是邊上一點(diǎn),連接,點(diǎn)是上一動(dòng)點(diǎn),連接.(1)如圖1,當(dāng)時(shí),連接,延長交于點(diǎn),求證:;(2)如圖2,以為直角邊作等腰,連接,若,當(dāng)點(diǎn)在運(yùn)動(dòng)過程中,求周長的最小值.
-參考答案-一、單選題1、C【解析】【分析】證EF是△ABC的中位線,得EF∥BC,再由平行線的性質(zhì)即可求解.【詳解】解:∵點(diǎn)E,F(xiàn)分別是AB,AC的中點(diǎn),∴EF是△ABC的中位線,∴EF∥BC,∴∠AEF=∠B=55°,故選:C.【點(diǎn)睛】本題考查了三角形中位線定理以及平行線的性質(zhì);熟練掌握三角形中位線定理,證出EF∥BC是解題的關(guān)鍵.2、B【解析】【分析】由題意作AR⊥BC于R,AS⊥CD于S,根據(jù)題意先證出四邊形ABCD是平行四邊形,再由AR=AS得平行四邊形ABCD是菱形,再根據(jù)勾股定理求出AB,最后利用菱形ABCD的面積建立關(guān)系得出紙條的寬AR的長.【詳解】解:作AR⊥BC于R,AS⊥CD于S,連接AC、BD交于點(diǎn)O.由題意知:AD∥BC,AB∥CD,∴四邊形ABCD是平行四邊形,∵兩個(gè)矩形等寬,∴AR=AS,∵AR?BC=AS?CD,∴BC=CD,∴平行四邊形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=3cm,OB=4cm,∴AB==5cm,∵平行四邊形ABCD是菱形,∴AB=BC=5cm,∴菱形ABCD的面積,即,解得:cm.故選:B.【點(diǎn)睛】本題主要考查菱形的判定以及勾股定理等知識(shí),解題的關(guān)鍵是掌握一組鄰邊相等的平行四邊形是菱形以及菱形的面積等于對角線相乘的一半.3、A【解析】【分析】根據(jù)中位線定理可得對角線AC的長,再由菱形面積等于對角線乘積的一半可得答案.【詳解】解:∵E,F(xiàn)分別是AD,CD邊上的中點(diǎn),EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面積S=×AC×BD=×2×2=2,故選:A.【點(diǎn)睛】本題主要考查菱形的性質(zhì)與中位線定理,熟練掌握中位線定理和菱形面積公式是關(guān)鍵.4、C【解析】【分析】先求得正方形的邊長,依據(jù)等邊三角形的定義可知BE=AB=4,連接BP,依據(jù)正方形的對稱性可知PB=PD,則PE+PD=PE+BP.由兩點(diǎn)之間線段最短可知:當(dāng)點(diǎn)B、P、E在一條直線上時(shí),PE+PD有最小值,最小值為BE的長.【詳解】解:連接BP.∵四邊形ABCD為正方形,面積為16,∴正方形的邊長為4.∵△ABE為等邊三角形,∴BE=AB=4.∵四邊形ABCD為正方形,∴△ABP與△ADP關(guān)于AC對稱.∴BP=DP.∴PE+PD=PE+BP.由兩點(diǎn)之間線段最短可知:當(dāng)點(diǎn)B、P、E在一條直線上時(shí),PE+PD有最小值,最小值=BE=4.故選:C.【點(diǎn)睛】本題考查的是等邊三角形的性質(zhì)、正方形的性質(zhì)和軸對稱—最短路線問題,熟知“兩點(diǎn)之間,線段最短”是解答此題的關(guān)鍵.5、D【解析】【分析】根據(jù)矩形和直角三角形的性質(zhì)求出∠BAE=30°,再根據(jù)直角三角形的性質(zhì)計(jì)算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=90°,∠BDA=∠DBC=30°,∵AE⊥BD,∴∠DAE=60°,∴∠BAE=30°,在Rt△ABE中,∠BAE=30°,BE=1cm,∴AB=2cm,∴AE=(cm),故選:D.【點(diǎn)睛】本題考查了矩形的性質(zhì),含30度角的直角三角形的性質(zhì),熟記各圖形的性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.6、C【解析】【分析】根據(jù)平行四邊形的性質(zhì),可得AB=CD,BC=AD,然后設(shè),可得到,即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,BC=AD,∵AB:BC=3:5,∴可設(shè),∵的周長為32cm,∴,即,解得:,∴.故選:C【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),熟練掌握平行四邊形的對邊相等是解題的關(guān)鍵.7、A【解析】【分析】如圖,延長,交于點(diǎn),證明,,再利用菱形的性質(zhì)證明:陰影部分的周長,從而可得答案.【詳解】解:如圖,延長,交于點(diǎn),四邊形是平行四邊形,,,四邊形是菱形,,陰影部分的周長,故需要測量的長度,故選A.【點(diǎn)睛】本題考查的是平行四邊形的性質(zhì),菱形的性質(zhì),證明陰影部分的周長是解本題的關(guān)鍵.8、A【解析】【分析】根據(jù)三角形的中位線定理得出EF=DN,從而可知DN最大時(shí),EF最大,因?yàn)镹與B重合時(shí)DN最大,此時(shí)根據(jù)勾股定理求得DN,從而求得EF的最大值.連接DB,過點(diǎn)D作DH⊥AB交AB于點(diǎn)H,再利用直角三角形的性質(zhì)和勾股定理求解即可;【詳解】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大時(shí),EF最大,∴N與B重合時(shí)DN=DB最大,在Rt△ADH中,∵∠A=60°∴AH=2×=1,DH=,∴BH=AB﹣AH=3﹣1=2,∴DB=,∴EFmax=DB=,∴EF的最大值為.故選A【點(diǎn)睛】本題考查了三角形的中位線定理,勾股定理,含30度角的直角三角形的性質(zhì),利用中位線求得EF=DN是解題的關(guān)鍵.9、B【解析】【分析】根據(jù)直角三角形斜邊上中線的性質(zhì),可得斜邊為2,然后利用兩直角邊之間的關(guān)系以及勾股定理求出兩直角邊之積,從而確定面積.【詳解】解:根據(jù)直角三角形斜邊上中線的性質(zhì)可知,斜邊上的中線等于斜邊的一半,得AC=2BD=2.∵一個(gè)直角三角形的周長為3+,∴AB+BC=3+-2=1+.等式兩邊平方得(AB+BC)2=(1+)2,即AB2+BC2+2AB?BC=4+2,∵AB2+BC2=AC2=4,∴2AB?BC=2,AB?BC=,即三角形的面積為×AB?BC=.故選:B.【點(diǎn)睛】本題考查直角三角形斜邊上的中線,勾股定理,三角形的面積等知識(shí)點(diǎn)的理解和掌握,巧妙求出AC?BC的值是解此題的關(guān)鍵,值得學(xué)習(xí)應(yīng)用.10、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)先求出∠B的度數(shù),即可得到答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故選B.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握平行四邊形鄰角互補(bǔ).二、填空題1、##【解析】【分析】根據(jù)矩形性質(zhì)得出AD=BC,AB=CD,∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,推出OA=OB=OC=OD,得出等邊三角形AOB,求出BD,根據(jù)勾股定理求出AD即可.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,∴OA=OB=OC=OD,∵∠AOB=60°,OB=OA,∴△AOB是等邊三角形,∵AB=3,∴OA=OB=AB=3,∴BD=2OB=6,在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=3,∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=3,∴矩形ABCD的周長是AB+BC+CD+AD=6+6.故答案為:6+6.【點(diǎn)睛】本題考查了矩形性質(zhì),等邊三角形的性質(zhì)和判定,勾股定理等知識(shí)點(diǎn),關(guān)鍵是求出AD的長.2、3.6【解析】【分析】連接BF,根據(jù)三角形的面積公式求出BH,得到BF,根據(jù)直角三角形的判定得到∠BFC=90°,根據(jù)勾股定理求出答案.【詳解】解:連接BF,∵BC=6,點(diǎn)E為BC的中點(diǎn),∴BE=3,又∵AB=4,∴AE=,∴BH=,則BF=,∵點(diǎn)E為BC的中點(diǎn),∴BE=EC,∵△ABE沿AE翻折至△AFE,∴FE=BE,∴FE=BE=EC,∴∠CBF=∠EFB,∠BCF=∠EFC,∴2∠EFB+2∠EFC=180°,∴∠EFB+∠EFC=90°∴∠BFC=90°,∴CF=.故答案為:3.6.【點(diǎn)睛】本題考查的是翻折變換的性質(zhì)和矩形的性質(zhì),掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等是解題的關(guān)鍵.3、135°【解析】【分析】先根據(jù)正方形的性質(zhì)得到∠OAC+∠OAD=45°,再由∠OAC=∠ODA,推出∠ODA+∠OAD=45°,即可利用三角形內(nèi)角和定理求解.【詳解】解:∵四邊形ABCD是正方形,∴∠CAD=45°,∴∠OAC+∠OAD=45°,又∵∠OAC=∠ODA,∴∠ODA+∠OAD=45°,∴∠AOD=180°-∠ODA-∠OAD=135°,故答案為:135°.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握正方形的性質(zhì).4、##【解析】【分析】由折疊及軸對稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,先證△ABF≌△DAE,推出AF的長,再利用勾股定理求出BF的長,最后在Rt△ABF中利用面積法可求出AH的長,可進(jìn)一步求出AG的長,GE的長.【詳解】解:∵四邊形ABCD為正方形,∴AB=AD=12,∠BAD=∠D=90°,由折疊及軸對稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF==13,S△ABF=AB?AF=BF?AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE-AG=13-=,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),軸對稱的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,面積法求線段的長度等,解題關(guān)鍵是能夠靈活運(yùn)用正方形的性質(zhì)和軸對稱的性質(zhì).5、.【解析】【分析】由AE=DA,點(diǎn)F1是CD的中點(diǎn),矩形ABCD的面積等于2,結(jié)合矩形的性質(zhì)可得△EF1D和△EAB的面積都等于1,結(jié)合三角形中線的性質(zhì)可得△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,△BCFn的面積為22,即可得出結(jié)論.【詳解】∵AE=DA,點(diǎn)F1是CD的中點(diǎn),矩形ABCD的面積等于2,∴△EF1D和△EAB的面積都等于1,∵點(diǎn)F2是CF1的中點(diǎn),∴△EF1F2的面積等于,同理可得△EFn﹣1Fn的面積為,∵△BCFn的面積為22,∴△EFnB的面積為2+1﹣12﹣(1).故答案為:.【點(diǎn)睛】本題考查了矩形的性質(zhì),三角形中線的性質(zhì),解題的關(guān)鍵是根據(jù)面積找出規(guī)律.6、①②③【解析】【分析】①連接BE,可得四邊形EFBG為矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,則∠OBF=∠OFB;由∠OBF=∠ADE,則∠OFB=∠ADE;由四邊形ABCD為正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的結(jié)論可得∠BFG=∠ADE;④由于點(diǎn)E為AC上一動(dòng)點(diǎn),當(dāng)DE⊥AC時(shí),根據(jù)垂線段最短可得此時(shí)DE最小,最小值為2,由①知FG=DE,所以FG的最小值為2.【詳解】解:①連接BE,交FG于點(diǎn)O,如圖,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四邊形EFBG為矩形.∴FG=BE,OB=OF=OE=OG.∵四邊形ABCD為正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正確;②延長DE,交FG于M,交FB于點(diǎn)H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正確;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正確;④∵點(diǎn)E為AC上一動(dòng)點(diǎn),∴根據(jù)垂線段最短,當(dāng)DE⊥AC時(shí),DE最?。逜D=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值為2,∴④錯(cuò)誤.綜上,正確的結(jié)論為:①②③.故答案為:①②③.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)與判定,正方形的性質(zhì),勾股定理,垂線段最短,掌握正方形的性質(zhì)是解題的關(guān)鍵.7、菱形【解析】【分析】先在坐標(biāo)系中畫出四邊形ABCD,由A、B、C、D的坐標(biāo)即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.【詳解】解:圖象如圖所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC=3,OB=OD=2,∴四邊形ABCD為平行四邊形,∵AC⊥BD,∴四邊形ABCD為菱形,故答案為:菱形.【點(diǎn)睛】本題主要考查了菱形的判定,坐標(biāo)與圖形,解題的關(guān)鍵在于能夠熟練掌握菱形的判定條件.8、6【解析】【分析】根據(jù)三角形的中位線等于第三邊的一半進(jìn)行計(jì)算即可.【詳解】解:∵D、E分別是△ABC邊AB、AC的中點(diǎn),∴DE是△ABC的中位線,∵BC=12,∴DE=BC=6,故答案為6.【點(diǎn)睛】本題主要考查了三角形中位線定理,熟知三角形中位線定理是解題的關(guān)鍵.9、【解析】【分析】根據(jù)中位線定理可得的長度,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求出的長度.【詳解】解:∵點(diǎn)、、分別是三邊的中點(diǎn),且∴∵∴故答案為:【點(diǎn)睛】本題主要考查了三角形的中位線定理和直角三角形斜邊上的中線,熟練掌握三角形的中位線定理和直角三角形斜邊上的中線是解答本題的關(guān)鍵.10、6或7【解析】【分析】分兩種情況進(jìn)行討論,當(dāng)在點(diǎn)的右側(cè)時(shí),在點(diǎn)的左側(cè)時(shí),根據(jù)△DEC≌△PFQ,可得,求解即可.【詳解】解:由題意可得,四邊形、為矩形,,、∴,∵△DEC≌△PFQ∴當(dāng)在點(diǎn)的右側(cè)時(shí),∴,解得當(dāng)在點(diǎn)的左側(cè)時(shí),∴,解得故答案為:或【點(diǎn)睛】此題考查了全等三角形的性質(zhì),矩形的判定與性質(zhì),解題的關(guān)鍵是根據(jù)題意,求得對應(yīng)線段的長,分情況討論列方程求解.三、解答題1、見解析【分析】首先根據(jù)平行四邊形的性質(zhì)推出AD=CB,AD∥BC,得到∠ADE=∠CBF,從而證明△ADE≌△CBF,得到∠AED=∠CFB,即可證明結(jié)論.【詳解】證:∵四邊形ABCD是平行四邊形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠AED=∠CFB,∴AE∥CF.【點(diǎn)睛】本題考查平行四邊形的性質(zhì),以及全等三角形的判定與性質(zhì)等,掌握平行四邊形的基本性質(zhì),準(zhǔn)確證明全等三角形并利用其性質(zhì)是解題關(guān)鍵.2、(1)見解析;(2)當(dāng)∠B1FE=60°時(shí),四邊形EFGB為菱形,理由見解析【分析】(1)由題意,,結(jié)合,得,同理可得,即,結(jié)合,依據(jù)平行四邊形的判定定理即可證明四邊形BEFG是平行四邊形;(2)根據(jù)菱形的性質(zhì)可得,結(jié)合(1)中結(jié)論得出為等邊三角形,依據(jù)等邊三角形的性質(zhì)及(1)中結(jié)論即可求出角的大小.【詳解】證明:(1)∵,∴.又∵,∴.∴.同理可得:.∴,又∵,∴四邊形BEFG是平行四邊形;(2)當(dāng)時(shí),四邊形EFGB為菱形.理由如下:∵四邊形BEFG是菱形,∴,由(1)得:,∴,∴為等邊三角形,∴,∴.【點(diǎn)睛】題目主要考查平行四邊形和菱形的判定定理和性質(zhì),矩形的折疊問題,等邊三角形的性質(zhì),熟練掌握特殊四邊形的判定和性質(zhì)是解題關(guān)鍵.3、(1)見解析;(2)菱形,見解析【分析】(1)根據(jù)等腰三角形的性質(zhì)得到AB=BC,∠A=∠C,由旋轉(zhuǎn)的性質(zhì)得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根據(jù)全等三角形的判定定理得到△BCF≌△BA1D;
(2)由(1)可知∠=∠=∠A=∠C=a,B=B=AB=BC通過證明∠FBC=∠可得BC,利用∠EC=∠C=180°推出∠EC+∠=180°得到BCE從而證明四邊形為平行四邊形再利用B=BC可證明四邊形為菱形.【詳解】(1)證明:∵等腰三角形ABC旋轉(zhuǎn)角a得到∴∠BD=∠FBC=a∠=∠=∠A=∠CB=B=AB=BC∴BCF(ASA)(2)解:四邊形為菱形理由:∵C=a由(1)可知∠=∠=∠A=∠C=aB=B=AB=BC又∵∠BD=∠FBC=a∴∠FBC=∠∴BC∴∠EC=∠C=180°∴∠EC+∠=180°∴BCE∴四邊形為平行四邊形又∵B=BC∴四邊形為菱形【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),等腰三角形的性質(zhì),正確的理解題意是解題的關(guān)鍵.4、(1)見解析;(2)2【分析】(1)先判斷出∠OAB=∠DCA,進(jìn)而判斷出∠DAC=∠DCA,得出CD=AD=AB,即可得出結(jié)論;(2)先判斷出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出結(jié)論.【詳解】(1)證明:∵ABCD,∴∠OAB=∠DCA,∵AC為∠DAB的平分線,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵ABCD,∴四邊形ABCD是平行四邊形,∵AD=AB,∴平行四邊形ABCD是菱形;(2)解:∵四邊形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年新能源材料及其應(yīng)用研究試題集
- 2026年農(nóng)業(yè)科技農(nóng)作物種植技術(shù)題庫
- 2026年金融分析師專業(yè)測試金融市場分析與私域流量的應(yīng)用
- 2026年企業(yè)數(shù)字化轉(zhuǎn)型與AI人才培訓(xùn)模式探究模擬試題
- 口腔常見疾病與保健
- 2025年工業(yè)產(chǎn)品生命周期評價(jià)(LCA)報(bào)告編制合同
- 綠化科技推廣活動(dòng)方案
- 燃?xì)庹{(diào)壓柜技術(shù)方案
- 城市排水設(shè)施綠色設(shè)計(jì)方案
- 水電站機(jī)組負(fù)荷調(diào)節(jié)方案
- 2024年水合肼行業(yè)發(fā)展現(xiàn)狀分析:水合肼市場需求量約為11.47萬噸
- 肺炎性假瘤誤診為肺癌的HRCT表現(xiàn)及淺析
- (正式版)JBT 14933-2024 機(jī)械式停車設(shè)備 檢驗(yàn)與試驗(yàn)規(guī)范
- 幼兒園勞動(dòng)教育計(jì)劃及實(shí)施
- 新人教版五年級小學(xué)數(shù)學(xué)全冊奧數(shù)(含答案)
- 志愿服務(wù)證明(多模板)
- 術(shù)后腸麻痹學(xué)習(xí)課件
- 淋膜作業(yè)標(biāo)準(zhǔn)指導(dǎo)書
- 頂管施工方案非開挖電纜管道專項(xiàng)施工方案
- XX小學(xué)傳統(tǒng)體育游戲集錦
- GB/T 33091-2016聚氨酯篩板
評論
0/150
提交評論